Category Archives: Climate change and palaeoclimatology

Soluble iron, black smokers and climate

 

Phytoplankton bloom in the Channel off SW England (Landsat image)

At present the central areas of the oceans are wet deserts; too depleted in nutrients to support the photosynthesising base of a significant food chain. The key factor that is missing is dissolved divalent iron that acts as a minor, but vital, nutrient for phytoplankton. Much of the soluble iron that does help stimulate plankton ‘blooms’ emanates from the land surface in wind blown dust (Palaeoclimatology September 2011) or dissolved in river water. A large potential source is from hydrothermal vents on the ocean floor, which emit seawater that has circulated through the basalts of the oceanic crust. Such fluids hydrate the iron-rich mafic minerals olivine and pyroxene, which makes iron available for transport. The fluids originate from water held in the muddy, organic-rich sediments that coat the ocean floor, and have lost any oxygen present in ocean-bottom water. Their chemistry is highly reducing and thereby retains soluble iron liberated by crustal alteration to emanate from hydrothermal vents. Because cold ocean-bottom waters are oxygenated by virtue of having sunk from the surface as part of thermohaline circulation, it does seem that ferrous iron should quickly be oxidised and precipitated as trivalent ferric compounds soon after hydrothermal fluids emerge. However, if some was able to rise to the surface it could fertilise shallow ocean water and participate in phytoplankton blooms, the sinking of dead organic matter then effectively burying carbon beneath the ocean floor; a ‘biological pump’ in the carbon cycle with a direct influence on climate. Until recently this hypothesis had little observational support.

The Southern Ocean surrounding Antarctica is iron-starved for the most part, but it does host huge phytoplankton blooms that are thought to play an important role in sequestration of CO2 from the atmosphere. Oceanographic research now benefits from semi-autonomous buoys set adrift in the deep ocean. The most sophisticated (Argo floats ) are able to dive to 2 km below the surface, measuring variations of physical and chemical conditions with depth for long periods. There are 4,000 of them, owned by several countries. Two of them drifted with surface currents across the line of the Southwest Indian Ridge through waters thought to be depleted in phytoplankton, despite having high nitrate, phosphate and silica contents – major ‘fertilisers’ in water. They showed up ‘spikes’ in chlorophyll concentrations in the upper levels of the Southern Ocean (Ardyna, M. and 11 others 2019. Hydrothermal vents trigger massive phytoplankton blooms in the Southern Ocean. Nature Communications, 5 June 2019, online; DOI: 10.1038/s41467-019-09973-6). Their location relative to a large cluster of hydrothermal vents on the Southwest Indian Ridge was ‘downstream’ of them in the circum-Antarctic Current, but remote from any known terrestrial source of iron (continental shelves, dust deposition melting sea ice). Earlier oceanographic surveys that detected anomalous helium isotope, typical of emanations from the mantle, show that hydrothermal-vent water moves through the two areas. Although the Argo floats are equipped for neither helium nor iron measurements, it is likely that the blooms benefitted from hydrothermal iron. Modelling of the likely current dispersion of material in the hydrothermal plumes also outlines a large area of ocean where iron fertilisation may encourage regular blooms where they would otherwise be highly unlikely. Unfortunately, the study does not include any direct evidence for elevated soluble iron.

One thing that the study does foster is renewed interest in deliberate iron-fertilisation of the oceans to speed up the ‘biological pump’ as a means of managing global warming (Boyd, P. & Vivian, C. 2019. Should we fertilize oceans or seed clouds? No one knows. Nature, v. 570, p. 155-157; doi: 10.1038/d41586-019-01790-7). Small scale pilots of such ‘geoengineering’ have been tried, but raised outcries from environmental groups. Other than detecting, or hinting at, soluble iron from a deep natural source, scientific research has provided scanty evidence of what iron-seeding at the surface might do. There could be unexpected consequences, such as methane emission from decay of the blooms – a worse greenhouse gas than carbon dioxide.

See also: An iron age for climate engineering? (Palaeoclimatology, July 2007); Dust in the wind: North Pacific Ocean fertilized by iron in Asian dust ( National Science Foundation 2019)

Anthropocene edging closer to being ‘official’

Note: Earth-Pages will be closing as of early July, but will continue in another form at Earth-logs

The issue of erecting a new stratigraphic Epoch encompassing the time since humans had a global effect on the Earth System has irked me ever since the term emerged for discussion and resolution by the scientific community in 2000. An Epoch in a chronostratigraphic sense is one of several arbitrary units that encompass all the rocks formed during a defined interval of time. The last 541 million years (Ma) of geological time is defined as an Eon – the Phanerozoic. In turn that comprises three Eras – Palaeozoic, Mesozoic and Cenozoic. The third level of division is that of Periods, of which there are 11 that make up the Phanerozoic. In turn the Periods comprise a total of 38 fourth-level Epochs and 85 at the fifth tier of Ages. All of these are of global significance, and there are even finer local divisions that do not appear on the International Chronostratigraphic Chart . If you examine the Chart you will find that no currently agreed Epoch lasted less than 11.7 thousand years (the Holocene) and all the others spanned 1 Ma to tens of Ma (averaged at 14.2 Ma). Indeed, even Ages span a range from hundreds of thousands to millions of years (averaged at 6 Ma).

lignite

The Vattenfall lignite mine in Germany; the Anthropocene personified

In the 3rd week of May 2019 the 34-member Anthropocene Working Group (AWG) of the International Commission on Stratigraphy (ICS) sat down to decide on when the Anthropocene actually started. That date would be passed on up the hierarchy of the geoscientific community  eventually to meet the scrutiny of its highest body, the executive committee of the International Union of Geological Sciences, and either be ratified or not. In the meantime the AWG is seeking a site at which the lower boundary of the Anthropocene would be defined by the science’s equivalent of a ‘golden spike’; theGlobal boundary Stratotype Section and Point (GSSP).

Several options were tabled for discussion and decision, summarised by a 2015 paper in Nature. A case against the erection of an official Anthropocene Epoch on stratigraphic grounds appeared in a GSA Todaypaper in 2016. Despite the fact that there is evidence for the start of human geological, geochemical and biological influences as far back as 8 000 years ago (in effect the Holocene is the Epoch of rapid human growth and transformations), the 2015 paper concludes that there are two candidates for the base of the Anthropocene. The earliest is the decline in atmospheric CO2 that began around 1570 CE and its recovery around 1620 CE recorded in Greenland ice cores. This is suggested to mark a fall in the indigenous population of the Americas from ~60 to ~6 million that followed the completion of European conquest, as a result of genocide, disease and famine. Regeneration of the American forest lands (~5 x 107 hectare) that the dead had once occupied drew down CO2.  However this overlaps with the coolest part of the Little Ice Age which may also have resulted in absorption of the greenhouse gas by cooled ocean water. The beginning of the industrial revolution was discounted on the grounds that it was diachronous as well as being difficult to define, having arisen first in Europe at some time in the 18th century. The second candidate was the period when ~500 nuclear weapons were tested above-ground, beginning in 1945 and ending by treaty between the then nuclear powers in 1963. These distributed long-lived plutonium globally, which resides in sediments as a ‘spike’. Around 1963 there are also clear signs that plastics, aluminium, artificial fertilisers, concrete and lead from petrol began to increase in sediments. It is this last option upon which the AWG settled, with 29 members for and 5 against, and is to forward up the ‘chain of command’ in the geoscientific bureaucracy. A detailed and sometimes amusing account of the AWG’s deliberations appeared in the online Guardian newspaper on 30 May 2019.

The decision, in my opinion, signifies that the Anthropocene is an Epoch that includes the future, which is somewhat pessimistic as well as being scientific nonsense. Yet, coinciding as it does with rapidly escalating efforts, mainly by young people, to end massive threats to the Earth System, that can only be welcomed. It is an essentially political statement, albeit with a learned cloak thrown over it.  The only way to erase the exponentially growing human buttock print on our home world is for growth-dependent economics to be removed too. That is the only logical basis for the ‘green’ revolt that is unfolding. If that social revolution doesn’t happen, there will be a mass extinction to join the ‘Big Five’, and society in all its personifications will collapse. That is known as barbarism…

 

Younger Dryas impact trigger: evidence from Chile

Note: Earth-Pages will be closing as of early July, but will continue in another form at Earth-logs

A sudden collapse of global climate around 12.8 ka and equally brusque warming 11.5 ka ago is called the Younger Dryas. It brought the last ice age to an end. Because significant warming preceded this dramatic event palaeoclimatologists have pondered its cause since it came to their attention in the early 20th century as a stark signal in the pollen content of lake cores – Dyas octopetala, a tundra wild flower, then shed more pollen than before or afterwards; hence the name. A century on, two theories dominate: North Atlantic surface water was freshened by a glacial outburst flood that shut down the Gulf Stream [June 2006]; a large impact event shed sufficient dust to lower global temperatures [July 2007]. An oceanographic event remains the explanation of choice for many, whereas the evidence for an extraterrestrial cause – also suggested to have triggered megafaunal extinctions in North America – has its supporters and detractors. The first general reaction to the idea of an impact cause was the implausibility of the evidence [November 2010], yet the discovery by radar of a major impact crater beneath the Greenland ice cap [November 2018] resurrected the ‘outlandish’ notion. A recent paper in Nature: Scientific Reports further sharpens the focus.

407458aa.2
Temperature fluctuations over the Greenland ice cap during the past 17,000 years, showing the abrupt cooling during the Younger Dryas. (credit: Don Easterbrook)

Since 2007, a team of Chilean and US scientists has been working on a rich haul of late Pleistocene fossil mammals from Patagonian Chile that turned up literally in someone’s suburban back garden in the town of Osorno. The stratigraphy has been systematically dated using the radiocarbon method. A dark layer composed of peat with abundant charcoal gave an age of about 12.8 ka, thereby marking both the local base of the Younger Dryas episode and a cap to the rich mammalian fossil assemblage. Similar beds have been found at more than 50 sites elsewhere in the world at this stratigraphic level, including a site in Arizona carrying Clovis artifacts. Steadily, such ‘black mats’ have been yielding magnetised spherules, elevated concentrations of platinum-group metals, gold, native iron, fullerenes and microscopic diamonds, plus convincing signs of wild fires at some sites; the very evidence that most researchers had panned when first reported. The Chilean example contains much the same pointers to an extraterrestrial cause, attributed to air-burst impacts (Pino, M. and 14 others 2019. Sedimentary record from Patagonia, southern Chile supports cosmic-impact triggering of biomass burning, climate change, and megafaunal extinctions at 12.8 ka. Scientific Reports, v. 9, article 4413; DOI: 10.1038/s41598-018-38089-y)

A larger team of researchers, to which several of the authors of the Chilean paper are affiliated, claim the evidence supports some kind of impact event 12.8 ka ago, possibly several produced by the break-up of a comet. Yet the criticisms persist. For instance, had there been wildfires on the scales suggested, then there ought to be a significant peak in the proportion of charcoal in lake bed sediments from any one region at 12.8 ka. In fact such data from North America show no such standalone peak among many from the age range of the Younger Dryas. The fossil record from the last few millennia of the Pleistocene does not support a sudden extinction, but a decline. The Clovis-point culture, thought by many to have wrought havoc on the North American megafauna, may have come to an end around 12.8 ka, but was quickly succeeded by an equally efficient technology – the Folsom point.  As regards the critical evidence for impacts, shocked mineral grains, none are reported, and some of the reported evidence of microspherules and nanodiamonds is not strongly supported by independent analysis – and nor are they unique to impact events. How about the dating? The evidence from ice cores strongly suggests that the Younger Dryas began with an 8° C temperature decline over less than a decade, and the end was equally as sudden. Is radiocarbon dating capable of that time resolution and accuracy? Certainly not

Related articles: Gramling, C. 2018. Why won’t this debate about an ancient cold snap die? (Science News); Easterbrook, D.L. 2012.The Intriguing Problem Of The Younger Dryas—What Does It Mean And What Caused It? (Watts Up With That); Wolbach, W.S. and 26 others 2018.  Extraordinary Biomass-Burning Episode and Impact Winter Triggered by the Younger Dryas Cosmic Impact ∼12,800 Years Ago. 1. Ice cores and Glaciers. Journal of Geology, v. 126, p. 165-184; DOI: 10.1086/695703; Wolbach, W.S. and 30 others 2018. Extraordinary Biomass-Burning Episode and Impact Winter Triggered by the Younger Dryas Cosmic Impact ∼12,800 Years Ago. 2. Lake, Marine, and Terrestrial Sediments. Journal of Geology, v. 126, p. 185-205; DOI: 10.1086/695704.

Tectonics and glacial epochs

Because the configuration of continents inevitably affects the ocean currents that dominate the distribution of heat across the face of the Earth, tectonics has a major influence over climate. So too does the topography of continents, which deflects global wind patterns, and that is also a reflection of tectonic events. For instance, a gap between North and South America allowed exchange of the waters of the Pacific and Atlantic Oceans throughout the Cenozoic Era until about 3 Ma ago, at the end of the Pliocene Epoch, although the seaway had long been shallowing as a result of tectonics and volcanism at the destructive margin of the eastern Pacific. That seemingly minor closure transformed the system of currents in the Atlantic Ocean, particularly the Gulf Stream, whose waxing and waning were instrumental in the glacial-interglacial cycles that have persisted for the last 2.5 Ma. This was partly through its northward transport of saltier water formed by tropical evaporation that cooling at high northern latitudes encouraged to sink to form a major component of the global oceanic heat conveyor system.   Another example is the rise of the Himalaya following India’s collision with Eurasia that gave rise to the monsoonal system  dominating the climate of southern Asia. The four huge climatic shifts to all-pervasive ice-house conditions during the Phanerozoic Eon are not explained so simply: one during the late-Ordovician; another in the late-Devonian; a 150 Ma-long glacial epoch spanning much of the Carboniferous and Permian Periods, and the current Ice Age that has lasted since around 34 Ma. Despite having been at the South Pole since the Cretaceous Antarctica didn’t develop glaciers until 34 Ma. So what may have triggered these four major shifts in global climate?

Five palaeoclimatologists from the University of California and MIT set out to find links, starting with the most basic parameter, how atmospheric greenhouse gases might have varied. In the long term CO2 builds up through its emission by volcanoes. It is drawn down by several geological processes: burial of carbon and carbonates formed by living processes; chemical weathering of silicate minerals by CO2 dissolved in water, which forms solid calcium carbonate in soil and carbonate ions in seawater that can be taken up and buried by shell-producing organisms. Rather than comparing gross climate change with periods of orogeny and mountain building, mainly due to continent-continent collisions, they focused on zones that preserve signs of subduction of oceanic lithosphere – suture zones (Macdonald,F.A. et al. 2019. Arc-continent collisions in the tropics set Earth’s climate state. Science, v. 363 (in press); DOI: 10.1126/science.aav5300 ). Comparing the length of all sutures active at different times in the Phanerozoic with the extent of continental ice sheets there is some correlation between active subduction and glaciations, but some major misfits. Selecting only sutures that were active in the tropics of the time – the zone of most intense chemical weathering – results in a far better tectonic-climate connection. Their explanation for this is not tropical weathering of all kinds of exposed rock but of calcium- and magnesium-rich igneous rocks; basaltic and ultramafic rocks. These dominate oceanic lithosphere, which is exposed to weathering mainly where slabs of lithosphere are forced, or obducted, onto continental crust at convergent plate margins to form ophiolite complexes. The Ca- and Mg-rich silicates in them weather quickly to take up CO2 and form carbonates, especially in the tropics. Through such weathering reactions across millions of square kilometres the main greenhouse gas is rapidly pulled out of the atmosphere to set off global cooling.

407458aa.2

Top – variation in the total length of active, ophiolite-bearing sutures during the Phanerozoic; middle – length of such sutures in the tropics; bottom – extent of Phanerozoic glaciers. (Credit: Macdonald et al. 2019; Fig.2

Rather than the climatic influence of tectonics through global mountain building, the previous paradigm, Macdonald and colleagues show that the main factor is where subduction and ophiolite obduction were taking place. In turn, this very much depended on the configuration of continents on which ophiolites can be preserved. The most active period of tectonics during the Mesozoic, as recorded by the global length of sutures, was at 250 Ma – the beginning of the Triassic Period – but they were mainly outside the tropics, when there is no sign of contemporary glaciation. During the Ordovician, late-Devonian and Permo-Carboniferous ice-houses active sutures were most concentrated in the tropics. The same goes for the build-up to the current glacial epoch.

Read more on Palaeoclimatology and Tectonics

The mid-Pleistocene transition

As shown by oxygen-isotope records from marine sediments, before about 1.25 Ma global climate cycled between cold and warm episodes roughly every 41 ka. Between 1.25 to 0.7 Ma these glacial-interglacial pulses lengthened to the ~100 ka periods that have characterised the last seven cycles that were also marked by larger volume of Northern Hemisphere ice-sheet cover during glacial maxima. Both periodicities have been empirically linked to regular changes in the Earth’s astronomical behaviour and their effects on the annual amount of energy received from the Sun, as predicted by Milutin Milankovich. As long ago as 1976 early investigation of changes of oxygen isotopes with depth in deep-sea sediments had revealed that their patterns closely matched Milankovich’s  hypothesis. The 41 ka periodicity matches the rate at which the Earth’s axial tilt changes, while the ~100 ka signal matches that for variation in the eccentricity of Earth’s orbit. 19 and 24 ka cycles were also found in the analysis that reflect those involved in the gyroscope-like precession of the axis of rotation. Surprisingly, the 100 ka cycling follows by far the weakest astronomical effect on solar warming yet the climate fluctuations of the last 700 ka are by far the largest of the last 2.5 million years. In fact the 2 to 8 % changes in solar heat input implicated in the climate cycles are 10 times greater than those predicted even for times when all the astronomical influences act in concert. That and other deviations from Milankovich’s hypothesis suggest that some of Earth’s surface processes act to amplify the astronomical drivers. Moreover, they probably lie behind the mid-Pleistocene transition from 41 to 100 ka cyclicity. What are they? Changes in albedo related to ice- and cloud cover, and shifts in the release and absorption of carbon dioxide and other greenhouse gases are among many suggested factors. As with many geoscientific conundrums, only more and better quality data about changes recorded in sediments that may be proxies for climatic variations are likely to resolve this one.

Adam Hazenfratz of ETH in Zurich and colleagues from several other European countries and the US have compiled details about changing surface- and deep-ocean temperatures and salinity – from δ18O and Mg/Ca ratios in foraminifera shells from a core into Southern Ocean-floor sediments – that go back 1.5 Ma (Hazenfratz, A.P. and 9 others 2019. The residence time of Southern Ocean surface waters and the 100,000-year ice age cycle. Science, v. 363, p. 1080-1084; DOI: 10.1126/science.aat7067). Differences in temperature and salinity (and thus density) gradients show up at different times in this critical sediment record. In turn, they record gross shifts in ocean circulation at high southern latitudes that may have affected the CO2 released from and absorbed by sea water. Specifically, Hazenfratz et al. teased out fluctuations in the rate of  mixing of dense, cold and salty water supplied to the Southern Ocean by deep currents with less dense surface water. Cold, dense water is able to dissolve more CO2 than does warmer surface water so that when it forms near the surface at high latitudes it draws down this greenhouse gas from the atmosphere and carries it into long-term storage in the deep ocean when it sinks. Deep-water formation therefore tends to force down mean global surface temperature, the more so the longer it resides at depth. When deep water wells to the surface and warms up it releases some of its CO2 content to produce an opposite, warming influence on global climate. So, when mixing of deep and surface waters is enhanced the net result is global warming, whereas if mixing is hindered global climate undergoes cooling.

407458aa.2

The Southern Ocean, where most dissolved and gaseous carbon dioxide are emitted and absorbed by seawater (Credit: British Antarctic Survey)

The critical factor in the rate of mixing deep with surface water is the density of that at the surface. When its salinity and density are low the surface water layer acts as a lid on what lies beneath, thereby increasing the residence time of deep water and the CO2 that it contains. This surface ‘freshening’ in the Southern Ocean seems to have begun at around 1.25 Ma and became well established 700 ka ago; that is, during the mid-Pleistocene climate transition. The phenomenon helped to lessen the greenhouse effect after 700 ka so that frigid conditions lasted longer and more glacial ice was able to accumulate, especially on the northern continents. This would have made it more difficult for the 41 ka astronomically paced changes in solar heating to have restored the rate of deep-water mixing to release sufficient CO2 to return the climate to interglacial conditions That would lengthen the glacial-interglacial cycles. The link between the new 100 ka cyclicity and very weak forcing by the varying eccentricity of Earth’s orbit may be fortuitous. So how might anthropogenic global warming affect this process? Increased melting of the Antarctic ice sheet may further freshen surface waters of the Southern Ocean, thereby slowing its mixing with deep, CO2-rich deep water and the release of stored greenhouse gases. As yet, no process leading to the decreased density of surface waters between 1.25 and 0.7 Ma has been suggested, but it seems that something similar may attend global warming.

Related articles: Menviel, L. 2019. The southern amplifier. Science, v. 363, p. 1040-1041; DOI: 10.1126/science.aaw7196; The deep Southern Ocean is key to more intense ice ages (Phys.org)

Read more on Palaeoclimatology

Volcanism and the Justinian Plague

Between 541 and 543 CE, during the reign of the Roman Emperor Justinian, bubonic plague spread through countries bordering the Mediterranean Sea. This was a decade after Justinian’s forces had had begun to restore the Roman Empire’s lost territory in North Africa, Spain, Italy and the present-day Balkans by expeditions out of Byzantium (the Eastern Empire). At its height, the Plague of Justinian, was killing 5000 people each day in Constantinople, eventually to consume 20 to 40% of its population and between 25 to 50 million people across the empire. Like the European Black Death of the middle 14th century. The bacterium Yersinia pestis originated in Central Asia and is carried in the gut of fleas that live on rats. The ‘traditional’ explanation of both plagues was that plague spread westwards along the Silk Road and then with black rats that infested ship-borne grain cargoes. Plausible as that might seem, Yersinia pestis, fleas and rats have always existed and remain present to this day. Trade along the same routes continued unbroken for more than two millennia. Although plagues with the same agents recurred regularly, only the Plague of Justinian and the Black Death resulted in tens of million deaths over short periods. Some other factor seems likely to have boosted fatalities to such levels.

407458aa.2

Monk administering the last rites to victims of the Plague of Justinian

Five years before plague struck the Byzantine historian Procopius recorded a long period of fog and haze that continually reduced sunlight; typical features of volcanic aerosol veils. Following this was the coldest decade in the past 2300 years, as recorded by tree-ring studies. It coincides with documentary evidence of famine in China, Ireland, the Middle East and Scandinavia.. A 72 m long ice core extracted from the Colle Gnifetti glacier in the Swiss Alps in 2013 records the last two millennia of local climatic change and global atmospheric dust levels. Sampled by laser slicing, the core has yielded a time series of data at a resolution of months or better. In 536 an Icelandic volcano emitted ash and probably sulfur dioxide over 18 months during which summer temperature fell by about 2°C. A second eruption followed in 540 to 541. ‘Volcanic winter’ conditions lasted from 536 to 545, amplifying the evidence from tree-ring data from the 1990’s.

The Plague of Justinian coincided with the second ‘volcanic winter’ after several years of regional famine. This scenario is paralleled by the better documented Great Famine of 1315-17 that ended the two centuries of economic prosperity during the 11th to 13th centuries. The period was marked by extreme levels of crime, disease, mass death, and even cannibalism and infanticide. In a population weakened through malnutrition to an extent that we can barely imagine in modern Europe, any pandemic disease would have resulted in the most affected dying in millions. Another parallel with the Plague of Justinian is that it followed the ending of four centuries of the Medieval Warm Period, during which vast quantities of land were successfully brought under the plough and the European population had tripled. That ended with a succession of major, sulfur-rich volcanic eruption in Indonesia at the end of the 13th century that heralded the Little Ice Age. Although geologists generally concern themselves with the social and economic consequences of a volcano’s lava and ash in its immediate vicinity– the ‘Pompeii view’ – its potential for global catastrophe is far greater in the case of really large (and often remote) events.

Chemical data from the same ice core reveals the broad economic consequences of the mid-sixth century plague. Lead concentrations in the ice, deposited as airborne pollution from smelting of lead sulfide ore to obtain silver bullion, fell and remained at low levels for a century. The recovery of silver production for coinage is marked by a spike in glacial lead concentration in 640; another parallel with the Black Death, which was followed by a collapse in silver production, albeit only for 4 to 5 years.

Related article: Gibbons, A. 2018. Why 536 was ‘the worst year to be alive’. Science, v. 362,p. 733-734; DOI:10.1126/science.aaw0632

Read more on Geohazards, Magmatism and Palaeoclimatology

Subglacial impact structure: trigger for Younger Dryas?

Radar microwaves are able to penetrate easily through several kilometres of ice. Using the arrival times of radar pulses reflected by the bedrock at glacial floor allows ice depth to be computed. When deployed along a network of flight lines during aerial surveys the radar returns of large areas can be converted to a grid of cells thereby producing an image of depth: the inverse of a digital elevation model. This is the only means of precisely mapping the thickness variations of an icecap, such as those that blanket Antarctica and Greenland. The topography of the subglacial surface gives an idea of how ice moves, the paths taken by liquid water at its base, and whether or not global warming may result in ice surges in parts of the icecap. The data can also reveal topographic and geological features hidden by the ice (see The Grand Greenland Canyon September 2013).

Untitled-2

Colour-coded subglacial topography from radar sounding over the Hiawatha Glacier of NW Greenland (Credit: Kjaer et al. 2018; Fig. 1D)

Such a survey over the Hiawatha Glacier of NW Greenland has showed up something most peculiar (Kjaer, K.H. and 21 others 2018. A large impact crater beneath Hiawatha Glacier in northwest Greenland. Science Advances, v. 4, eaar8173; DOI: 10.1126/sciadv.aar8173). Part of the ice margin is an arc, which suggests the local bed topography takes the form of a 31km wide, circular depression. The exposed geology shows no sign of a structural control for such a basin, and is complex metamorphic basement of Palaeoproterozoic age. Measurements of ice-flow speeds are also anomalous, with an array of higher speeds suggesting accelerated flow across the depression. The radar image data confirm the presence of a subglacial basin, but one with an elevated rim and a central series of small peaks. These are characteristic of an impact structure that has only been eroded slightly; i.e. a fairly recent one and one of the twenty-five largest impact craters on Earth.. Detailed analysis of raw radar data in the form of profiles through the ice reveals  that the upper part is finely layered and undisturbed. The layering continues into the ice surrounding the basin and is probably of Holocene age (<11.7 ka), based on dating of ice in cores through the surrounding icecap. The lower third is structurally complex and shows evidence for rocky debris. Sediment deposited by subglacial streams where they emerge along the arcuate rim contain grains of shocked quartz and glass, as well as expected minerals from the crystalline basement rocks. Some of the shocked material contains unusually high concentrations of transition-group metals, platinum-group elements and gold; further evidence for impact of extraterrestrial material – probably an iron asteroid that was originally more than 1 km in diameter. The famous Cape York iron meteorite, which weighs 31 t – worked by local Innuit to forge harpoon blades – fell in NW Greenland about 200 km away.

The central issue is not that Hiawatha Glacier conceals a large impact crater, but its age. It certainly predates the start of the Holocene and is no older than the start of Greenland glaciation about 2.6 Ma ago. That only Holocene ice layers are preserved above the disrupted ice that rests immediately on top of the crater raises once again the much-disputed possibility of an asteroid impact having triggered the Younger Dryas cooling event and associated extinctions of large mammals in North America at about 12.9 ka (see Impact cause for Younger Dryas draws flak May 2008). Only radiometric dating of the glassy material found in the glaciofluvial sediments will be able to resolve that particular controversy.

Snowball Earth: A result of global tectonic change?

The Snowball Earth hypothesis first arose when Antarctic explorer Douglas Mawson (1882-1958)speculated towards the end of his career on an episode of global glaciations, based on his recognition in South Australia of thick Neoproterozoic glacial sediments. Further discoveries on every continent, together with precise dating and palaeomagnetic indications of the latitude at which they were laid down, have steadily concretised Mawson’s musings. It is now generally accepted that frigid conditions enveloped the globe at least twice – the Sturtian (~715 to 660 Ma) and Marinoan (650 to 635 Ma) glacial episodes – and perhaps more often during the Neoproterozoic Era. Such an astonishing idea has spurred intensive studies of geochemistry associated with the events, which showed rapid variations in carbon isotopes in ancient seawater, linked to the terrestrial carbon cycle that involves both life- and Earth processes. Strontium isotopes suggest that the Neoproterozoic launched erratic variation of continental erosion and weathering and related carbon sequestration that underpinned major climate changes in the succeeding Phanerozoic Eon. Increased marine phosphorus deposition and a change in sulfur isotopes indicate substantial change in the role of oxygen in seawater. The preceding part of the Proterozoic Eon is relatively featureless in most respects and is known to some geoscientists as the ‘Boring Billion’.

Untitled-1

Artist’s impression of the glacial maximum of a Snowball Earth event (Source: NASA)

Noted tectonician Robert Stern and his colleague Nathan Miller, both of the University of Texas, USA, have produced a well- argued and -documented case (and probably cause for controversy) that suggests a fundamental change in the way the Precambrian Earth worked at the outset of the Neoproterozoic (Stern, R.J. & Miller, N.R. 2018. Did the transition to plate tectonics cause Neoproterozoic Snowball Earth. Terra Nova, v. 30, p. 87-94). To the geochemical and climatic changes they have added evidence from a host of upheavals in tectonics. Ophiolites and high-pressure, low-temperature metamorphic rocks, including those produced deep in the mantle, are direct indicators of plate tectonics and subduction. Both make their first, uncontested appearance in the Neoproterozoic. Stern and Miller ask the obvious question; Was this the start of plate tectonics? Most geologists would put this back to at least the end of the Archaean Eon (2,500 Ma) and some much earlier, hence the likelihood of some dispute with their views.

They consider the quiescent billion years (1,800 to 800 Ma) before all this upheaval to be evidence of a period of stagnant ‘lid tectonics’, despite the Rodinia supercontinent having been assembled in the latter part of the ‘Boring Billion’, although little convincing evidence has emerged to suggest it was an entity formed by plate tectonics driven by subduction. But how could the onset of subduction-driven tectonics have triggered Snowball Earth? An early explanation was that the Earth’s spin axis was much more tilted in the Neoproterozoic than it is at present (~23°). High obliquity could lead to extreme variability of seasons, particularly in the tropics. A major shift in axial tilt requires a redistribution of mass within a planetary body, leading to true polar wander, as opposed to the apparent polar wander that results from continental drift. There is evidence for such an episode around the time of Rodinia break-up at 800 Ma that others have suggested stemmed from the formation of a mantle superplume beneath the supercontinent.

Considering seventeen possible geodynamic, oceanographic and biotic causes that have been plausibly suggested for global glaciation Stern and Miller link all but one to a Neoproterozoic transition from lid- to plate tectonics. Readers may wish to examine the authors’ reasoning to make up their own minds –  their paper is available for free download as a PDF from the publishers.

A fully revised edition of Steve Drury’s book Stepping Stones: The Making of Our Home World can now be downloaded as a free eBook

The Great Barrier Reef and the Last Glacial Maximum (LGM)

The 2,300 km stretch of coral reefs and islands in the Coral Sea off the coast of Queensland, Australia is the largest single structure on Earth built by living organisms. The dominant reef builders are four hundred species of coral, most of which are a symbiosis that conjoins marine invertebrates in the class Anthozoa – part of the phylum Cnidaria – and photosynthesising single-celled eukaryotes known as dinoflagellates. These algae are mainly free-living marine plankton, some species of which evolved to be co-opted by corals. Their role in the symbiosis is complex; on the one hand providing energy in the form of sugars, glycerol and amino acids; on the other consuming the coral polyps’ carbon dioxide output. The latter is fixed, in the case of hard corals, by the secretion of calcium carbonate: the key to reef formation.

Marine photosynthesisers demand clear water in the upper few tens of metres of the sea, together with sunlight least affected by the atmosphere, as in the tropics where the sun rises to the zenith year round. The coral animal-algae connection limits reef growth to shallow seas, the top of the reef being close to mean sea level, sometimes rising above it at low tide. Hence the formation of fringing and barrier reefs. In the case of atoll reefs, a connection with sea-floor volcanoes that rose from hotspots on the oceanic abyssal plains to form active volcanic islands that began to sink once they became extinct. The pace at which reefs can grow is generally able to match that of crustal subsidence so that atolls remain throughout the Western Pacific. Reef growth is also capable of coping with global sea-level changes, so that the present top level of the Great Barrier Reef has been in balance with the generally static sea level of the Holocene since the ice caps of the last glaciation melted back to roughly their present extent about seven thousand years ago.

There are many cases of different reef levels on and around islands that match the sea-level fluctuations during the last Ice Age.  High-resolution bathymetry produced by multi-beam sonar across the eastern edge of parts of the Great Barrier Reef reveals a series of submerged terraces down to almost 120 m below modern sea-level (Yokoyama, Y. and 17 others 2018. Rapid glaciation and a two-step sea level plunge in the Last Glacial Maximum. Nature, v. 559, p. 603-607; doi:10.1038/s41586-018-0335-4). Globally, the LGM began at around 31 ka when sea level fell by about 40 metres, thanks to massive accumulation of glacial ice at high latitudes. Previous studies to chart the changes in global mean sea level during the LGM suggested a steady fall until about 20 ka, followed by rapid rise as ice caps melted back. The multinational team led by Yusuke Yokoyama of the University of Tokyo, obtained precise ages of coral samples from different depths in drill cores through the coral terraces. These data revealed a more complex pattern of sea-level change, in particular a hitherto unsuspected plunge between 21.9 and 20.5 ka of 20 m to reach -118 m. This immediately preceded the warming-related rise that continued to Holocene levels.

GBR Bathymetry

High-resolution sonar images of the sea floor at two sites on the eastern edge of Australia’s Great Barrier Reef. They show terraces associated with, the lowest of which corresponds to the Last Glacial Maximum. (Credit: Yokoyama et al. 2018, Figure 1)

Curiously, this massive phenomenon is not shown by sea-level estimates derived from the records of changing oxygen isotopes in ocean-floor sediments and ice cores. The team’s complex modelling incorporated global changes in land and sea-bed levels, and thus changes in the volume of the ocean basins, due to the changing isostatic effects of both ice-cap and ocean masses. From these it is possible to reach an interesting conclusion (Whitehouse, P. 2018. Ancient ice sheet had a growth spurt. Nature, v. 603, p. 487-488; doi:10.1038/d41586-018-05760-3). Rather than an increase in snowfall onto ice-caps, their retreat may have been hindered by thickening of marginal floating ice shelves that created buttresses around Antarctica and the northern ice sheets. Slowed glacial flow to the oceans could have promoted ice sheet growth for a time as melting of calved icebergs was hindered, especially in the case of the ice sheet over northern North America. Certainly, this crucial climatic turning point was a lot more complex than previously believed.

Sea-level rise following a Snowball Earth

The Cryogenian Period (850 to 635 Ma) of the Neoproterozoic is named for the intense glacial episodes recorded in strata of that age. There were two that palaeomagnetism  in glaciogenic sedimentary rocks indicates that ice covered all of the continents including those in the tropics, and a third, less extreme one. These episodes, when documented in the 1990s, became dubbed, aptly enough, as ‘Snowball Earth’ events. But evidence for frigidity does not pervade the entire Cryogenian, the glacial events being separated by long periods with no sign anywhere of tillites or glaciomarine diamictites shed by floating ice. Each Snowball Earth episode is everywhere overlain by thick carbonate deposits indicating clear, shallow seas and a massive supply of calcium and magnesium ions to seawater. The geochemical change is a clear indicator of intense chemical weathering of the exposed continents. The combination of Ca and Mg with carbonate ions likewise suggests an atmosphere rich in carbon dioxide. For frigidity episodically to have pervaded the entire planet indicates a distinct dearth of the greenhouse gas in the atmosphere during those events. The likely explanation for Snowball Earths is one of booms in the abundance of minute marine organisms, perhaps a consequence of the high phosphorus levels in the oceans during the Neoproterozoic when seawater was alkaline. The carbon-isotope record suggests that there were periodic, massive bursts of organic matter that would have drawn down atmospheric CO2, which coincide with the evidence for global frigidity, although marine life continued to flourish.

Artist’s impression of the glacial maximum of a Snowball Earth event (Source: NASA)

Under such ice-bound conditions the build-up of continental glaciers would have resulted in huge falls in global sea level, far exceeding the 150 m recorded during some late-Pleistocene glacial maxima. The end of each Snowball Earth would have led to equally dramatic rises and continental flooding. Such scenarios are well accepted to have occurred when accumulation of volcanic CO2 during full ice cover reached a threshold of global warming potential that could overcome the reflection of solar radiation by the high albedo of ice extending to the tropics. That threshold has been estimated to have been between 400 to 500 times the CO2 content of the atmosphere at present. Yet it has taken an intricate analysis of sedimentary structures that are commonplace in marine sediments of any age – ripple marks – to quantify the pace of sea-level rise at the end of a Snowball Earth event (Myrow, P.M. et al. 2018. Rapid sea level rise in the aftermath of a Neoproterozoic snowball Earth. Science, v. 360, p. 649-651; doi:10.1126/science.aap8612).

The Elatina Formation of South Australia, deposited during the Marinoan (~635 Ma) glaciation, is famous for the intricacy of its sedimentary structures especially in the clastic sedimentary rocks beneath the cap carbonate that marks the end of glacial conditions. Among them are laminated silts and fine sands that were originally thought to be the equivalent of modern varved sediments that form annually as lakes or shallow seas freeze over and then melt with the seasons. Since they contain ripple marks the laminates of the Elatina Formation clearly formed as a result of current flow and wave action – the sea surface was therefore ice free while these sediments accumulated. Careful study of the larger ripples, which are asymmetrical, shows that current-flow directions periodically reversed, suggesting that they formed as a result of tidal flows during the bi-monthly cycle of spring and neap tides in marine deltas. Data from experiments in wave tanks shows that the shapes (expressed as their amplitude to wavelength ratio) of wave ripples depend on the orbital motion of water waves at different depths. The smaller ripples are of this kind. So Myrow and colleagues have been able to tease out a time sequence from the tidal ripples and also signs of any variation in the water depth at which the smaller wave ripples formed.

Ripples on a bedding surface in the Elatina Formation, South Australia. They formed under the influence of tidal current flow. (Credit, University of Guelph, https://atrium.lib.uoguelph.ca/xmlui/handle/10214/9367?show=full)

Just over 9 metres of the tidal laminate sequence that escaped any erosion was deposited in about 60 years, giving a sedimentation rate of 27 cm per year. This is extremely high by comparison with those in any modern marine basins, probably reflecting the sediment-charged waters during a period of massive glacial melting. Throughout the full 27 m sequence smaller, wave ripples consistently show that water depth remained between 9 to 16 m for about a century. Over such a short time interval any tectonic subsidence or sag due to sediment load would have been minuscule. So sea-level rise kept pace with deposition; i.e. at the same rate of 27 cm per year. That is at least five times faster than during any of the Pleistocene deglaciations and about a hundred times faster than sea-level rise today that is caused by melting of the Greenland and Antarctic ice caps and thermal expansion of ocean water due to global warming. It has been estimated that the Marinoan ice sheets lowered global sea level by between 1.0 to 1.5 km – ten times more than in the last Ice Age – so deglaciation to the conditions of the cap carbonates, shallow, clear seas at around 50°C, would have taken about 6,000 years at the measured rate.

To read more on the Snowball Earth hypothesis and other early glacial epochs click here

A fully revised edition of Steve Drury’s book Stepping Stones: The Making of Our Home World can now be downloaded as a free eBook