Category Archives: Geobiology, palaeontology, and evolution

Earth-pages has closed

Dear Earth-pages readers,

It is almost two decades since I was invited to write a regular series of articles on developments in the geosciences at Earth-pages. The site’s archives comprise more than 1200 of my commentaries, covering over 1500 publications. Since 2011 its annual readership has been between 40,000 to 80,000. Sadly, Earth-pages closed on August 1 2019 and no new posts will be added to it. Instead, activity has been transferred to a new site called Earth-logs. Titles of new additions to Earth-logs will continue to be posted here with links to the full text.

Given its wide and loyal readership, I believe that the Earth-pages archives will continue to remain useful, especially for students, teachers and those hoping to begin geoscientific research. So, with the permission of Wiley-Blackwell, they too have been transferred to the new Earth-logs site .


The format is different: the early posts (2000 to 2018) are logged annually under 12 broad themes: GeohazardsGeomorphologyHuman evolution and migrationsMagmatismMiscellaneous CommentaryPalaeoclimatologyPalaeobioloy; Physical ResourcesPlanetary ScienceRemote SensingSedimentology and Stratigraphy, and Tectonics. Each of these pages indexes the research topics covered during each year, along with links to PDFs of the annual logs.

New posts are added regularly to the Earth-logs Home Page. I intend to continue writing these commentaries in the same style as I have adopted at Earth-pages, for as long as I can. An important addition is direct web access to most of the papers on which the posts and the entries in annual logs are based, so that readers can download them as PDFs for their own use.

Thanks for reading my stuff here. Hopefully you will continue to do so at Earth-logs

Steve Drury

What followed the K-Pg extinction event?

Reconstruction of the 35 kg early Palaeocene mammal Taeniolabis (credit: Wikipedia)

Read about processes connected with the Chicxulub impact that may have influenced the K-Pg mass extinction and the evolution of mammalian survivors during the first million years of the Palaeocene, as revealed by a unique sedimentary sequence near Denver, Colorado, USA.

A dinosaur nesting colony

Read about a new discovery in Mongolia at Earth-logs

dino nest
Clutch of near-spherical dinosaur eggs from Mongolia: scale bar = 10 cm. (Credit: Kanaka et al. 2019; Fig. 2A)

Geochemical background to the Ediacaran explosion

The first clear and abundant signs of multicelled organisms appear in the geological record during the 635 to 541 Ma Ediacaran Period of the Neoproterozoic, named from the Ediacara Hills of South Australia where they were first discovered in the late 19thcentury. But it wasn’t until 1956, when schoolchildren fossicking in Charnwood Forest north of Leicester in Britain found similar body impressions in rocks that were clearly Precambrian age that it was realised the organism predated the Cambrian Explosion of life. Subsequently they have turned-up on all continents that preserve rocks of that age (see: Larging the Ediacaran, March 2011). The oldest of them, in the form of small discs, date back to about 610 Ma, while suspected embryos of multicelled eukaryotes are as old as the very start of the Edicaran (see; Precambrian bonanza for palaeoembryologists, August 2006).


Artist’s impression of the Ediacaran Fauna (credit: Science)

The Ediacaran fauna appeared soon after the Marinoan Snowball Earth glaciogenic sediments that lies at the top of the preceding Cryogenian Period (650-635 Ma), which began with far longer Sturtian glaciation (715-680 Ma). A lesser climatic event – the 580 Ma old Gaskiers glaciation – just preceded the full blooming of the Ediacaran fauna. Geologists have to go back 400 million years to find an earlier glacial epoch at the outset of the Palaeoproterozoic. Each of those Snowball Earth events was broadly associated with increased availability of molecular oxygen in seawater and the atmosphere. Of course, eukaryote life depends on oxygen. So, is there a connection between prolonged, severe climatic events and leaps in the history of life? It does look that way, but begs the question of how Snowball Earth events were themselves triggered.

There are now large amounts of geochemical data from Neoproterozoic sedimentary rocks that bear on processes in the atmosphere, seawater, continental crust and the biosphere of the time. Some are indicative of the reducing/oxidising (redox) potentials of ocean water in which various sediments were deposited. Carbon isotopes chart organic burial and the abundance of CO2 in the oceans and atmosphere. Strontium isotopes give details of the rates of continental erosion. The age statistics of zircon grains in sediments are useful; the proportion of zircons close in age to the time of sediment deposition relative to older grains is a proxy for the rate of continental-arc volcanism and thus for subduction rates. Joshua Williams of Britain’s University of Exeter and colleagues from the universities of Edinburgh and Leeds have used complex modelling to assess the pace at which oxygen was added to the surface environment through the Ediacaran Period (Williams, J.J. et al. 2019. A tectonically driven Ediacaran oxygenation eventNature Communications, v.  10 (1); DOI: 10.1038/s41467-019-10286-x).

They estimate a 50% increase in atmospheric oxygen during the Ediacaran to about 0.25 % of the present concentration, which would be sufficient to support large, mobile animals. They attribute this primarily to a boost in the supply of CO2 to the atmosphere as a result of increased volcanic activity. This would have warmed the surface environment so that exposed rock on the continents underwent accelerated chemical weathering. By freeing from continental crust increased amounts of nutrients, such as phosphorus and potassium, the boost to photosynthesis would have increased the oceanic biomass, thereby emitting oxygen. Multicelled animals would have been beneficiaries of such a transformation. The trend continued into the Cambrian, thereby unleashing the explosion of animals and their evolution that continued through the Phanerozoic. Ultimately, the trigger was increased Late-Neoproterozoic tectonic activity that drove the massive Pan-African orogeny and the accretion of the Gondwana supercontinent.

See also:

Note added, 26 June 2019: Roger Mason has referred me to the carbon-isotope record during the Ediacaran. It shows some of the stratigraphic record’s largest negative δ13C excursions in carbonate rocks (Tahata, M. and 10 others 2013. Carbon and oxygen isotope chemostratigraphies of the Yangtze platform, South China: Decoding temperature and environmental changes through the EdiacaranGondwana Research, v.23, p. 333-353; DOI: 10.1016/ Such isotopic excursions went on throughout the Ediacaran, along with sudden fossil appearances and disappearances – so-called ‘Strangelove’ oceans – plus fluctuations in sediment types and climate. The Ediacaran was a wild time in most respects.


Geochemical changes recorded in the complete Ediacaran sedimentary sequence of the Three Gorges of the Yangtze River, China (credit: Tahata et al. 2013; Fig. 4)

A role for iron in the origin of life

Experiments aimed at suggesting how RNA and DNA – prerequisites for life, reproduction and evolution – might have formed from a ‘primordial soup’ have made slow progress. Another approach to the origin of life is investigation of the most basic chemical reactions that it engages in. Whatever the life form, prokaryote or eukaryote, its core processes involve reducing carbon dioxide, or other simple carbon-bearing compounds, and water to synthesise organic molecules that make up cell matter. Organisms also engage in metabolising biological compounds to generate energy. At their root, these two processes mirror each other; a creative network of reactions and another that breaks compounds down, known as the Krebs- and the reverse-Krebs cycles. In living organisms both are facilitated by other organic compounds that, of course, are themselves produced by cells. How such networks arose under inorganic conditions remains unknown, but three biochemists at the University of Strasbourg in France (Muchowska, K.B. et al. 2019. Synthesis and breakdown of universal metabolic precursors promoted by iron. Nature, v. 569, p. 104-107;  DOI: 10.1038/s41586-019-1151-1) have designed an inorganic experiment. They aimed to investigate how two simple organic compounds, which conceivably could have formed in a lifeless early environment, might have been encouraged to kick-start basic living processes. These are glyoxylate (HCOCO2) and pyruvate (CH3COCO2).

The most difficult chemical step in building complex organic compounds is inducing carbon atoms to bond together through C-C bonds; a process that thermodynamics tends to thwart but is accomplished in living cells by adenosine tri-phosphate (ATP). Previous workers focussed on interactions between reactive compounds, such as cyanide and formaldehyde, as candidates for the precursors of life, but such chemistry is totally different from what actually goes on in organisms. Joseph Moran, one of the co-authors of the paper, and his research group recently settled on five fundamental linkages of C, H and O as ‘universal hubs’ at the core of the Krebs cycle and its reverse. Kamila Muchowska and co-workers found that glyoxylate and pyruvate introduced into a simulated hydrothermal fluid that contains ions of ferrous iron (reduced Fe2+) were able to combine in producing all five ‘universal hubs. Ferrous iron clearly acted as a catalyst, through being a powerful reducing agent or electron donor, to get around the stringencies of classic thermodynamics. Moran’s team had previously shown that pyruvate itself can form inorganically from CO2 in water laced with iron, cobalt and nickel ions. Formation of glyoxylate in such a manner has yet to be demonstrated. Nevertheless, the two together in a watery soup of transition metal ions seem destined to produce an abundance of exactly the compounds at the root of living processes. In fact the experiment showed that all but two of the eleven components of the Krebs cycle can be synthesised inorganically.


Metal-rich ‘black smoker’ at a hydrothermal vent on the mid-Atlantic ridge(credit: Kate Larkin, Seascape, Belgium)

Until the rise of free oxygen in the Earth system some 2400 Ma ago, the oceans would have been awash with soluble ferrous iron. This would have been especially the case around hydrothermal vents that result from the interaction between water and hot mafic lavas of the oceanic crust, together with less abundant transition-metal ions, such as those of nickel and cobalt. The ocean-vent hypothesis for the origin of life seems set for a surge forward.

See also: Katsnelson, A. 2019. Iron can catalyse metabolic reactions without enzymes.

Read more on Palaeobiology

A bad day at the end of the Cretaceous

Note: Earth-Pages will be closing as of early July, but will continue in another form at Earth-logs

The New Yorker magazine normally features journalism, commentary, criticism, essays, fiction, satire, cartoons, and poetry. So it is odd that this Condé Nast glossy for the chattering classes snaffled online what may be the geological scoop of the 21st century so far (Preston, D. 2019. The day the dinosaurs died. The New Yorker 8 April 2019 issue). The paper that lies at the centre of the story had not been published and nor had the issue of The New Yorker in which Douglas Preston’s story was scheduled for publication. The very day (29 March 2019) that Britain was thwarted of its Brexit moment the world’s media was frothing with news about the end of another era; the Mesozoic. The paper itself was published online on April Fools’ Day with a title that is superficially arcane (DePalma, R.A. and 11 others 2019. A seismically induced onshore surge deposit at the KPg boundary, North Dakota. Proceedings of the National Academy of Science, early online publication;p DOI: 10.1073/pnas.1817407116). But its contents are the stuff of dreams for any aspiring graduate student of palaeontology; the Indiana Jones opportunity.

An ‘onshore surge deposit’ occurs at many Western Hemisphere sites where the K-Pg boundary outcrops in terrestrial or shallow-marine sediments. The closer to the Chicxulub crater north of Mexico’s Yucatan Peninsula the more obvious they are, for they result from the tsunamis that immediately followed the asteroid impact. Lead author Robert DePalma, now of the University of Kansas, became focussed on the dinosaur-rich, Late Cretaceous Hell Creek Formation of North Dakota as an undergraduate. Accepted for graduate studies he was directed to a project on the fauna of lacustrine sediments close to the K-Pg boundary layer, which is well-known in the area, and that’s what he has been engaged with ever since. In 2012 he was guided to a remarkable locality by a rockhound, disappointed because it exposed extremely fossil-rich sediments but was so soft that none could be extracted intact with a hammer and chisel. It turned out to have resulted from a surge along a sinuous river that had washed debris onto a point-bar deposit at the inside of a meander. The debris includes remains of both marine and terrestrial organisms and shows clear signs of having been swept upriver, i.e. from the sea and possibly the result of a tsunami. Being capped by a thin, iridium-rich layer of impactite, the 1.5 metre surge deposit is part of the K-Pg boundary layer, and probably represented only a few hours before being blanketed by ejecta.

This Event Deposit comprises two graded, fining-upwards units and thus two distinct surges, with a thin mat of vegetation fragments immediately below the Ir-rich clay cap that also contains sparse shocked quartz grains. The Event Deposit contains altered glass spherules throughout, which cgradually become smaller higher in the 1.5 m sequence. Some of the larger spherules produced ‘micro-craters’ in the sediments. Fossils include marine ammonite fragments (some still nacreous) and freshwater fish (paddlefish and sturgeon). The fish are so complete as to suggest an absence of scavengers. The paper itself contains little of the information that dominated Preston’s New Yorker article and the global media coverage. This included clear evidence that the fish ingested spherules, found clogging their gills and possible causing their death. There are examples of spherules embedded in amber formed from plant sap, which suggests sub-aerial fall of ejecta, and among the marine faunal samples are teeth of fish and reptiles (see DePalma et al’s Supplemental Data). The most startling finds reported by Preston are nowhere to be found in DePalma et al’s paper or its supplement. These include possible dinosaur feathers; a fragment of ceratopsian dinosaur skin attached to a hip bone; a burrow containing a mammal jaw that penetrates the K-Pg boundary layer; dinosaur remains, including an egg (complete with embryo) and hatchlings of dinosaurian groups found at deeper levels in the Hell Creek Formation. Previously, palaeontologists had found no dinosaur remains less than 3 m below the K-Pg boundary layer anywhere on Earth, prompting the suggestion that they had become extinct before the near-instantaneous effects of Chicxulub, and were perhaps victims of the general effects of the Deccan Trap volcanism. If verified in later peer-reviewed publications, DePalma et al’s work would help resolve the gradual vs sudden hypotheses for the end-Cretaceous mass extinction.

gill spherules

X-ray and CT images of impact spherules in the gills of a fossil sturgeon from the Tanis K-Pg site, North Dakota (credit DePalma et al. 2019; Fig. 6)

Preston reports some academic scepticism about DePalma’s work, and emphasises his showmanship at conferences; for instance, he named the site ‘Tanis’ after the ancient city in Egypt featured in the 1981 film Raiders of the Lost Ark. There are geophysical queries too. If the inundation was by the on-shore effects of a tsunami it doesn’t tally with the abundance of ejecta fallout of glass spherules: tsunamis propagate in shallow seawater at speeds less than 50 km h-1  and more slowly still in channels, whereas impact ejecta travel much faster. This is acknowledged in the paper’s supplement, and the paper refers to a seiche wave activated by seismic waves associated with the Chicxulub impact which could have arrived in North Dakota at about the same time as its ejecta blanket. The paper’s authorship includes the imprimatur of other authorities in different geoscientific fields, including Walter Alvarez, jointly famed with his father Luis for the discovery of the K-Pg boundary horizon and its impact connections in 1981. So it carries considerable weight. No doubt further comment and further papers on the Tanis site will emerge: DePalma has yet to complete his PhD. It may become the lagerstätte of the K-Pg extinction; in DePalma’s words ‘It’s like finding the Holy Grail clutched in the bony fingers of Jimmy Hoffa, sitting on top of the Lost Ark.’ …

Read more on Palaeobiology and Impacts

The Cambrian Explosion: a broader view

The base of the Cambrian has long been defined as the level where abundant shelly fossils and most phyla first occur in the stratigraphic record. That increase in diversity led to the nickname ‘Cambrian Explosion’, despite the fact that sheer numbers and diversity of lesser taxa took a long time to rise to ‘revolutionary’ levels. Yet a great deal of animal evolution was going on during the preceding Proterozoic Era that was revealed once palaeobiological research blossomed in rocks of that age range. Today, the earliest occurrences, or at least hints, of quite a few phyla can be traced to the last 100 Ma of the Precambrian. Clearly, the Cambrian Explosion needs a fresh look now that so many data are in. Any palaeontologist would benefit from reading a Perspective article in the latest issue of Nature Ecology & Evolution (Wood, R. and 8 others 2019. Integrated records of environmental change and evolution challenge the Cambrian Explosion. Nature Ecology & Evolution, v. 3, online publication; DOI: 10.1038/s41559-019-0821-6)

Rachel Wood of Edinburgh University and co-authors working elsewhere in Britain, Canada, Japan and Finland sift the growing wealth of fossil and trace-fossil evidence that predate the start of the Cambrian. They also consider the geochemical events that stand out in the Ediacaran Period that succeeds the Snowball Earth events of the Cryogenian. Their account recognises that the geochemical changes – principally a series of carbon-isotope (δ13C) excursions – may have resulted from tectonic changes. The carbon-isotope data mark a series of short-lived penetrations of oxygen-rich conditions deep into the ocean water column and longer periods of oxygen-starved deep water. Such perturbations in oceanic redox conditions ‘speed-up’ thorough the late-Ediacaran into the Cambrian: a profound and protracted transition from the Neoproterozoic world to that of the Phanerozoic. Over the same time span there is a ‘progressive addition of biological novelty’ in the form and function of the evolving biota, so that  each successive assemblage builds on the earlier advances.

The fossil evidence suggests that the earliest Ediacaran fauna was metazoan but with no sign of bilaterian affinities (i.e. having ‘heads’ and ‘tails’). The rise of bilaterians of which most animal phyla are members occupied the later Ediacaran , with the first evidence of locomotion – and almost by definition animals with ‘fore’ and ‘aft’ – being around 560 Ma. Each discrete shift from more to less oxic conditions in the oceans seems to have knocked-back animal life, the reverse being accompanied by diversification of survivors. Oxygenation at the very start of the Cambrian marked the beginnings of a diversification clearly manifested by animals capable of biomineralisation and the secretion of hard parts with clear patterns. Such ‘shelly faunas’ are present in the latest Ediacaran sediments but with a multiplicity of seemingly arbitrary forms, although trace fossils suggest soft-bodied animals did have definite morphological pattern.


Diorama of the Lower Cambrian Qingjiang fauna (Credit: Fu et al. 2019; Fig 4)

Adding yet more information to early metazoan history is the recently discovered Cambrian Qingjiang lagerstätte of Hubei Province in southern China dated at 518 Ma; similar in its exquisite preservation to the Burgess (508 Ma) and Chengjiang (518 Ma) biotas (Fu, D. and 14 others 2019. The Qingjiang biota—A Burgess Shale-type fossil Lagerstätte from the early Cambrian of South China. Science, v. 363, p. 1338-1342; DOI: 10.1126/science.aau8800). The two previously discovered Cambrian lagerstättes are notable for their very diverse arthropod and sponge faunas. That at Qingjiang adds an abundance of cnidarians, jellyfish, sea anemones, corals and comb jellies, rare in the other two biotas, plus kinorhynchs or mud dragons – moulting invertebrates known only from Cambrian and modern sediments. The fossils at Qingjiang include only about 8% of the taxa of the same age found at Chengjiang, suggesting different environments

The idea of a sudden, discrete explosive event in the history of life, which coincided with the start of the Cambrian, now seems difficult to support. This should not damage the status of 541 Ma as the start of the Phanerozoic because stratigraphy basically gives form to the passage of time and has done since its emergence in the 19th century, so keeping the names of the divisions is essential to continuity.

Related articles: Daley, A.C. 2019. A treasure trove of Cambrian fossils. Science, v. 363, p. 1284-1285; DOI: 10.1126/science.aaw8644. Switek, B. 2019. Fossil Treasure Trove of Ancient Animals Unearthed in China (

Read more on Palaeobiology

Better dating of Deccan Traps, and the K-Pg event

Predictably, the dialogue between the supporters of the Deccan Trap flood basalts and the Chicxulub impact as triggers that were responsible for the mass extinction at the end of the Mesozoic Era (the K-Pg event) continues. A recent issue of Science contains two new approaches focussing on the timing of flood basalt eruptions in western India relative to the age of the Chicxulub impact.


The Deccan Traps in the Western Ghats of India (Credit: Wikipedia)

This item can be read in full at Earth-logs, which replaces Earth-pages


Plants first to succumb to the end-Permian event

We have become accustomed to thinking that up to 90% of organisms were snuffed out by the catastrophe at the Permian-Triassic boundary 252 Ma ago. Those are the figures for marine organisms, whose record in sediments is the most complete. It has also been estimated to have lasted a mere 60 ka, and the recovery in the Early Triassic to have taken as long as 10 Ma. There are hints of three separate pulses of extinction related to: initial gas emission from the Siberian Traps; coal fires; and release of methane from sea-floor gas hydrates at the peak of global warming. Various terrestrial sequences record the collapse of dense woodlands, so that the Early Triassic is devoid of coals that are widespread in the preceding Late Permian. A new detailed study of terrestrial sediments in the Sydney Basin of eastern Australia reveals something new (Fielding, C.R. and 10 others 2019. Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nature Communications, v. 10, online publications: DOI: 10.1038/s41467-018-07934-z).


The distinctive, tongue-like form of Glossopteris leaves that dominate the coal-bearing Permian strata of the southern coninents. Their occurrence in South America, Africa, India, Australia, New Zealand, and Antarctica prompted Alfred Wegener to suggest that these modern continents had been united in Pangaea by Permian times: a key to continental drift. (Credit: Getty Images)

Christopher Fielding or the University of Nebraska-Lincoln and colleagues focused on pollens, geochemistry and detailed dating of the sedimentary succession across the P-Tr boundary exposed on the New South Wales coast. The stratigraphy is intricately documented by a 1 km deep well core that penetrates a more or less unbroken fluviatile and deltaic sequence that contains eleven beds of volcanic ash. The igneous layers are key to calibrating age throughout the sequence (259.10 ± 0.17 to 247.87 ± 0.11 Ma using zircon U-Pb methods). The pollens change abruptly from those of a Permian flora, dominated by tongue-like glossopterid plants, to a different association that includes conifers. The change coincides with a geochemical ‘spike’ in the abundance of nickel and a brief change in the degree of alteration of detrital fledspars to clay minerals. The first implicates the delivery of massive amounts of nickel to the atmosphere, probably by the eruption of the Siberian Traps , which contain major economic nickel deposits. The second feature suggests a brief period of warmer and more humid climatic conditions. A third geochemical change is the onset of oscillations in the abundance of 13C that are thought to record major changes in plant life across the planet. These features would have been an easily predicted association with the 252 Ma mass extinction were it not for the fact that the radiometric dating places them about 400 thousand years before the well-known changes in global animal life. Detailed dating of the Siberian Traps links the collapse of Glossopteris and coal formation to the earliest extrusion of flood basalts, which suggests that the animal extinctions were driven by cumulative effects of the later outpourings

Related article: Chris Fielding comments on the paper at Nature Research/Ecology and Evolution

Read more on Palaeobiology and Stratigraphy

Something large moved 2 billion years ago

More than 50 years ago a group of schoolchildren discovered a fronded fossil (Charnia) in the Precambrian rocks of Charnwood Forest in the English Midlands. Since then it has been clear that multicellular life originated before the Cambrian Period, when the first tangible life had previously been considered to have emerged. Discovery of the rich Ediacaran fauna of quilted, baglike and disc-like animals in 635 Ma old Neoproterozoic sediments in South Australia, and many other occurrences re-established the start of the ‘carnival of animals’ in the Ediacaran Period (635 to 541 Ma). It happened to follow the climatic and environmental turmoil of at least two Snowball Earth episodes during the preceding Cryogenian Period (850 to 635 Ma), which has led to a flurry of suggestions for the transition from protozoan to metazoan life. Yet, applying a ‘molecular-clock’ approach to the genetic differences between living metazoan organisms seems to suggest a considerable earlier evolutionary event that started ‘life as we know it’. That may have been confirmed by a discovery in much older sediments in Gabon, West Africa.

A sequence of shallow-marine sediments in the Francevillian Series in Gabon was laid down at a time of fluctuating sea level around 2100 Ma ago, when the upper oceans had become oxygenated. In them are black shales that preserve an abundance of intricate sedimentary features. Among them are curious stringy structures rich in crystalline pyrite (Fe2S). They are infilled wiggly tubes that lie in the shale bedding. CT scans reveal that the bedding has been flattened around the tubules as it became lithified. So the tubes formed while the sediment was wet and soft (El Albani, A. and 22 others 2019. Organism motility in an oxygenated shallow-marine environment 2.1 billion years ago. Proceedings of the National Academy of Sciences, online preprint; DOI: 10.1073/pnas.1815721116). They look very like burrows. Up to 5 mm across, they can be considered large by comparison with almost all organisms known from that time. The exception comes from the same stratigraphic Series in Gabon. In 2010, El Albani and colleagues published an account of fossils preserved by pyrite that look like fried eggs, 1 to 2 cm across, with scalloped edges. Internal structures revealed by CT scanning include radial slits in the ‘whites’ and folding within the central ‘yolk’. That paper reported the geochemical presence in the host shales of steranes, which are breakdown products of steroids that are unique to eukaryotes. Could these organisms and the wiggly tube-like trace fossils indicate the presence of the earliest metazoans in the Francevillian Series?


Palaeoproterozoic fossils from the Francevillian Series in Gabon. Top: greytone photographs of burrow-like trace fossils (Credit: El Albani et al. 2019; Fig.1). Bottom: colour photograph and 3 CT scans of discoidal fossil (Credit: El Albani et al. 2010; Fig. 4).

Until the discoveries in Gabon, the oldest organic structure that had been suggested to be a metazoan was the rare Grypania, a spiral, strap-like fossil found in a variety of strata ranging in age from 1870 to 650 Ma. Being made of a structureless ribbon of graphite, Grypania seems most likely to have been made by colonial bacteria. The two Gabon life forms cannot be disposed of quite so easily. The discoids have organised structures rivalling those in Ediacaran animals, while the wiggly tubes clearly seem to indicate something capable of movement. In both cases preservation is by iron sulfide, which suggests the presence at some stage of chemo-autotrophic bacteria that reduce sulfate ions to sulfide. Could these not have formed mats taking up irregular discs and plates? The burrows may have been formed by unicellular eukaryotes, one type of which – the slime moulds – is capable of aggregating together to form multi-celled reproductive structures as well as living freely as single amoeba. Some form slug-like masses that are capable of movement; not metazoans, but perhaps their precursors.

Read more on Palaeobiology