Tag Archives: Milky Way

The Higgs, gravity waves and now: dark matter and the dinosaurs

The discovery around 50 years ago that in orbiting the centre of the Milky Way galaxy the solar system regularly wobbles to either side of its path. If the galaxy’s physical properties varied in a direction at right angles to the plane of the Milky Way then the Sun and its planets would experience that variation in a regular and predictable way (see Galactic controls http://earth-pages.co.uk/2011/12/15/galactic-controls/). Such oscillations might therefore show up as periodic changes in the geological record. There are loads of such cycles some not so regular, such as the accretion and disaggregation of supercontinents, and some involved in climatic change that have almost the predictability of a metronome.
One of these periodicities has thrilled geoscientists ever since it first began to emerge from improved dating of events in the geological record and more extensive knowledge of what it contained. Massive floods of basaltic magma blurt from the mantle every so often; more specifically approximately every 35 Ma. Intriguingly, there is a rough tally between the timing of such large igneous provinces and pulses in biological extinction. The wobbles in the solar system’s galactic passage are – wait for it – about every 35 Ma. A supposed link between LIPs, extinctions and galactic motions simply will not go away as a topic for speculation. Add to that some evidence that terrestrial impact cratering might have a 35 Ma period and you have ‘a story that will run and run’. The apparent periodicity of impacts, besides encouraging links with life and death and magmas, now seems to have spurred links with the dark side of cosmology.

English: Artist's conception of the spiral str...

Artist’s conception of the spiral structure of the Milky Way with two major stellar arms and a central bar (credit: Wikipedia)

It does indeed seem that the galactic magnetic field and dust concentrations vary across the plane of the Milky Way, but their affects during solar peregrinations have been raised long before now (Steiner, J. 1967. The sequence of geological events and the dynamics of the Milky Way Galaxy. Journal of the Geological Society of Australia, v. 14, p. 99–132.). The latest novelty concerns the possibility that galaxies might somehow collect the fabled but as yet undiscovered ‘dark matter’ in a flat disc within the galactic plane. Well, matter, ‘dark’ or not, should have mass, and mass must have a gravitational effect (thanks of course to the Higgs boson), even if it is hidden. Instead of some Nemesis or Death Star, as once was proposed to nudge comets from the outer reaches of the solar system, a gigantic dish of dark matter through which the Sun might pass on a regular basis might serve more plausibly (Randall, L. & Reece, MM. 2014. Dark matter as a trigger for periodic comet impacts. Physical Review Letters. arXiv:1403.0576 [astro-ph.GA]). Interestingly, Comments on the paper at the arXiv site read “Accepted by Physical Review Letters. 4 figures, no dinosaurs”

Solar System, in Perspective

Solar System, in Perspective (credit: NASA Goddard SFC)

Enhanced by Zemanta
Advertisements

Galactic controls

English: Artist's conception of the Milky Way ...

Artists impression of the Milky Way viewed along its axis. Image via Wikipedia

Palaeoclimatologists are quite content that an important element in controlling the vagaries of climate is due to gravitational forces that cyclically perturb Earth’s orbit, it axial tilt and the way the axis of rotation wobbles in a similar manner to that of a gyroscope. The predictions about this by James Croll in the late 19th century, which were quantified by Milutin Milankovich during his incarceration during World War I, triumphed when the predicted periods of change were found in deep-sea floor sediment records in 1972. Authors of ideas that link Earth system changes  to the progress of the Solar system through the Milky Way galaxy haven’t had the same accolades. One of the first to suggest a galactic link was Joe Steiner (Steiner, J. 1967. The sequence of geological events and the dynamics of the Milky Way Galaxy. Journal of the  Geological Society of  Australia, v.  14, p. 99–132.) but his work is rarely credited.

There has been an upsurge of interest in the last decade or so. In a recent issue of New Scientist Stephen Battersby reviews what galactic ‘forcings’ may have accomplished during the 4.5 billion-year history of our world (Battersby, S. 2011. Earth odyssey. New Scientist, v. 212 (3 December issue), p. 42-45). Having formed probably much closer to the galactic centre than its current position the Solar System has drifted, perhaps even ‘surfed’ gravitationally, outwards to reach its present ‘suburban’ position in one of the spiral arms. There are regularities to the now stabilised orbital movements: once every 200 million years the Solar System completes a full orbit; this orbit wobbles across the hypothetical plane of the galactic disc by as much as 200 light years, moving with and against the Milky Way’s cosmic motion. It has proved impossible so far to detect any sign of the orbital 200 Ma periodicity in events on the Earth, and most attention has centred on the wobble.

Steiner suggested that this motion may have crossed different polarities of the galactic magnetic field, perhaps triggering the periodicity of geomagnetic  changes in polarity, but this now seems unlikely. However, his suggestion that glacial epochs, such as those in the Palaeo- and Neoproterozoic, at the end of the Palaeozoic Era and at present, may have resulted from the Solar System’s passage through dust and gas banding in the Milky Way continues to have its attractions (e.g. Pavlov, A.A. et al. 2005. Passing through a giant molecular cloud: “Snowball” glaciations produced by interstellar dust, Geophysical Research Letters, v. 32, p. L03705). The direction of motion relative to the Milky Way’s cosmic drift governs the exposure to cosmic rays that result from a kind of ‘bow-shock’ ahead of the galaxy

Stellar motion through the Milky Way is semi-independent so that from time to time the Solar System may have been sufficiently close to regions of dense dust and gas that nurture the formation of super-massive stars. These huge objects quickly evolve to end in supernovae, proximity to which would have exposed life to ‘hard’ X- and  γ-rays and would be trigger for mass extinction, for instance by accompanying cosmic rays in destroying the ozone protection from UV radiation from the Sun.

The dynamism of the Earth and the resulting complexity of its surface processes makes it a poor place to look for physical signs of galactic influences. No so the Moon: for almost 4.5 billion years it has been a passive receptor for virtually anything that the cosmos could fling at it, and so geologically inert that its surface layers may well preserve a complete ‘stratigraphic’ record of all kinds of process. Should lunar landings with geological capabilities once more prove economically possible, or politically useful, that hidden history could be read.