Snowball Earth: A result of global tectonic change?

The Snowball Earth hypothesis first arose when Antarctic explorer Douglas Mawson (1882-1958)speculated towards the end of his career on an episode of global glaciations, based on his recognition in South Australia of thick Neoproterozoic glacial sediments. Further discoveries on every continent, together with precise dating and palaeomagnetic indications of the latitude at which they were laid down, have steadily concretised Mawson’s musings. It is now generally accepted that frigid conditions enveloped the globe at least twice – the Sturtian (~715 to 660 Ma) and Marinoan (650 to 635 Ma) glacial episodes – and perhaps more often during the Neoproterozoic Era. Such an astonishing idea has spurred intensive studies of geochemistry associated with the events, which showed rapid variations in carbon isotopes in ancient seawater, linked to the terrestrial carbon cycle that involves both life- and Earth processes. Strontium isotopes suggest that the Neoproterozoic launched erratic variation of continental erosion and weathering and related carbon sequestration that underpinned major climate changes in the succeeding Phanerozoic Eon. Increased marine phosphorus deposition and a change in sulfur isotopes indicate substantial change in the role of oxygen in seawater. The preceding part of the Proterozoic Eon is relatively featureless in most respects and is known to some geoscientists as the ‘Boring Billion’.

Untitled-1

Artist’s impression of the glacial maximum of a Snowball Earth event (Source: NASA)

Noted tectonician Robert Stern and his colleague Nathan Miller, both of the University of Texas, USA, have produced a well- argued and -documented case (and probably cause for controversy) that suggests a fundamental change in the way the Precambrian Earth worked at the outset of the Neoproterozoic (Stern, R.J. & Miller, N.R. 2018. Did the transition to plate tectonics cause Neoproterozoic Snowball Earth. Terra Nova, v. 30, p. 87-94). To the geochemical and climatic changes they have added evidence from a host of upheavals in tectonics. Ophiolites and high-pressure, low-temperature metamorphic rocks, including those produced deep in the mantle, are direct indicators of plate tectonics and subduction. Both make their first, uncontested appearance in the Neoproterozoic. Stern and Miller ask the obvious question; Was this the start of plate tectonics? Most geologists would put this back to at least the end of the Archaean Eon (2,500 Ma) and some much earlier, hence the likelihood of some dispute with their views.

They consider the quiescent billion years (1,800 to 800 Ma) before all this upheaval to be evidence of a period of stagnant ‘lid tectonics’, despite the Rodinia supercontinent having been assembled in the latter part of the ‘Boring Billion’, although little convincing evidence has emerged to suggest it was an entity formed by plate tectonics driven by subduction. But how could the onset of subduction-driven tectonics have triggered Snowball Earth? An early explanation was that the Earth’s spin axis was much more tilted in the Neoproterozoic than it is at present (~23°). High obliquity could lead to extreme variability of seasons, particularly in the tropics. A major shift in axial tilt requires a redistribution of mass within a planetary body, leading to true polar wander, as opposed to the apparent polar wander that results from continental drift. There is evidence for such an episode around the time of Rodinia break-up at 800 Ma that others have suggested stemmed from the formation of a mantle superplume beneath the supercontinent.

Considering seventeen possible geodynamic, oceanographic and biotic causes that have been plausibly suggested for global glaciation Stern and Miller link all but one to a Neoproterozoic transition from lid- to plate tectonics. Readers may wish to examine the authors’ reasoning to make up their own minds –  their paper is available for free download as a PDF from the publishers.

A fully revised edition of Steve Drury’s book Stepping Stones: The Making of Our Home World can now be downloaded as a free eBook

Evolution of the River Nile

The longest river in the world, the Nile has all sorts of riveting connotations in terms of archaeology, Africa’s colonial history, the romance of early exploration and is currently the focus of disputes about rights to its waters. The last stems from its vast potential for irrigation and for hydropower. It is probably the most complex of all the major rivers of our planet because it stretches across so many climatic zones, topographic systems geological and tectonic provinces. Mohamed Abdelsalam of Oklahoma State University, who was born in the Sudan and began his career at the confluence of the White and Blue Nile in its capital Khartoum, is an ideal person to produce a modern scientific summary of how the Nile has evolved. That is because he has studied some of the key elements of the geology through which the river and its major tributaries travel, but most of all because he is a leading geological and geomorphological interpreter of remotely sensed data. Only space imagery can let us grasp the immense span and complexity of the Nile system. His recent review of its entirety (Abdelsalam, M.G. 2018. The Nile’s journey through space and time: A geological perspective. Earth Science Reviews, v. 177, p. 742-773; doi: 10.1016/j.earscirev.2018.01.010) is a tour de force, many years in the compilation, and it makes fittingly compulsive reading.

Abdelsalam lays out the geomorphology, underlying geology and regional tectonics of the Nile drainage basin, synthesized from publications over the last century, including his own work on the evolution of the Blue Nile in Ethiopia. On the regional scale elements of its complexity can be ascribed to the upwelling of mantle plumes beneath the Ethiopian Highlands and Red Sea, and under the Lake Plateau centred on Kenya, Tanzania, Rwanda and Burundi. These plumes are part of a much larger mantle mass rising from the core-mantle boundary beneath the African continent. Their influence on the lithosphere of north-east Africa began over 30 million years ago, producing vast outpourings of flood basalts followed by regional doming, the formation of large shield volcanoes and rifting to transform a once muted surface to one with a topographic range of up to 5 kilometres in the Nile’s two main source regions in Ethiopia and the Lakes Plateau.

Nile geology F5

The geological underpinnings of the Nile system (Credit: Abdelsalam 2018; Fig. 5)

The basin can be divided into six distinct provinces, from south to north the Lakes, Sudd, Central Sudan, Ethiopia – East Sudan, Cataract and Egyptian Niles. Each of them has had a different history; in fact, the making of the Nile system as we know it has taken at least 6 million years and probably longer. For instance, the Lakes Nile basin, founded mostly on Precambrian crystalline basement, seems original to have drained westward through the Congo system to the Atlantic Ocean. Sometime between 20 and 12 Ma the western branch of the East African Rift System began to form along with slow, broad uplift, hindering westward flow to create the forerunners of the Great Lakes. The flow was reversed around 2.5 Ma ago by the rise of the Rwenzori and Virunga massifs on the western rift flank and eventually forced northwards into the low-lying Sudd, breaching a major divide in Northern Uganda. The vast swamps there have acted as a buffer for sediment supply, other than the finest silts and clays, into the northern stretches of the White Nile. The Blue Nile’s tortuous trajectory evolved as the Ethiopian flood basalt province rose after 30 Ma, rifted to form the Lake Tana Basin and drained to initiate erosion into the rising plateau with the interference of huge shield volcanoes that formed as uplift proceeded.

Other events are recorded along the Nile’ general trajectory by huge, abandoned alluvial fans, relics of now vanished lakes and evidence from satellite radar of palaeo-drainages with reversed flow beneath the surface of the eastern Sahara. The system evolved episodically, in five or more steps, at the whim of broad tectonic processes that affected flow direction and erosive capacity. The Cataract Nile that cuts through hard basement rocks perhaps records the increase in energy added by the Blue Nile which, which in turn may have encouraged the drainage of the huge Sudd swamps that established the White Nile’s course. Even the Mediterranean Sea played a role: the Egyptian Nile may have formed when the sea vanished to expose a deep saline basin during the Messinian Salinity Crisis 5.5 Ma ago. This reduction in the regional base level of erosion possibly directed drainage into the present course of the Nile. The various provinces only became a unified drainage system during the last half million years, and that emerged in its present form as recently as 15 thousand years ago.  But as Abdelsalam points out, there is a great deal to learn about the fabled river system. Hopefully his review will encourage others to take investigations forward and into previously unstudied regions.

The hobbits of Flores: An update

Homo floresiensis (the "Hobbit")

Homo floresiensis from Liang Bua Cave, Flores, Indonesia. (Credit: Wikipedia)

In October 2004 the world’s news media headlined the discovery of fossil remains of a tiny adult human on the Indonesian island of Flores, dated at around 18 ka. At only 1 m tall, with a brain cavity around a third the size of ours, yet having used stone tools and fire she was a sensational find. Someone so tiny and with such a small brain seemed highly unlikely to some palaeoanthropologists. Others claimed she was of a different species altogether. Homo floresiensis was also challenged as a new species and attributed to some congenital cause of small stature in a modern human – H. sapiens had first colonised Flores between 50 and 35 ka. But the subsequent discovery of remains of nine more individuals revealed skeletal details that were definitely un-human, with a suggestion of greater affinity to H. erectus. Her stature even suggested to a few anthropologists that she may have descended from migrant H. habilis, previously known only from 2 Ma ago in East Africa. The issue of relatedness was partly resolved by further dating of the cave strata that entombed the ‘hobbit’ which pushed her back to between 190 to 50 ka, beyond the earliest date of modern human colonisation. Further fragmentary fossil finds in more easily dated sediments on Flores showed the earliest known H. floresiensis lived around 700 ka ago. Stone tools and butchered prey remains on the island go back to 1 Ma, when the hominin trail goes cold.

English: Cave where the remainings of ' where ...

Liang Bua cave where the remains of Homo floresiensis were discovered in 2003. (credit: Wikipedia)

A plausible theory for these human’s ‘hobbit’-like size is an evolutionary process known as island dwarfism, akin to that which produced the tiny elephants (Stegodon) on which they preyed. Such dramatic size reduction may arise through the influence of stringently limited food resources on the evolution of descendants from a restricted founder population, genetically cut-off from larger, more widespread populations. It now appears that such dwarfism has also affected a modern human population living on Flores (Tucci, S and 14 others 2018. Evolutionary history and adaptation of a human pygmy population of Flores Island, Indonesia. Science,  v. 361, p. 511-516; doi: 10.1126/science.aar8486). A group of people of diminished stature live within shouting distance of the Liang Bua cave in which Homo floresiensis was first discovered. On average adults in the village are about 1.45 m tall. They certainly are not relict H. floresiensis, just significantly smaller than other Indonesian people living on Flores.

Serena Tucci and colleagues analysed the DNA of 32  adult pygmies from the village of Rampasasa. They show no sign of DNA from any other archaic human population than the Neanderthal and Denisovan traces that every living person outside of Africa carries – the pygmies are not descendants of H. floresiensis and are little different from other Indonesians and the rest of us. The analysis does show, however, that their ancestors carried a mixture of DNA from East Asia and New Guinea; perhaps a result of several waves of migration between 50 and 5 ka. They also carry significantly more DNA segments that are linked to short stature than do other East Asians. This suggests natural selection favored existing genes for shortness while the pygmies’ ancestors were on Flores; in other words they display an example of island dwarfism akin to that probably explaining the ‘hobbits’. Moreover, the people of Rampasasa show signs of an evolutionary adaptation to an almost exclusively meat and seafood diet, possibly arising after they migrated to Flores and had to depend on the available fauna but little in the way of plant foods.

A fully revised edition of Steve Drury’s book Stepping Stones: The Making of Our Home World can now be downloaded as a free eBook

Hot-spot track beneath the Greenland ice cap

Around 63 Ma ago, during the Palaeocene Epoch, major igneous activity broke out in what are now both sides of the North Atlantic Ocean. After initial sputtering it culminated massively between 57 and 53 Ma. Relics are to be seen in Baffin Island, West and East Greenland, the Faeroes and north-western parts of the British Islands, in the form of flood basalts, dyke swarms and scattered remnants of central volcanoes. Offshore drilling on the North Atlantic’s continental shelves suggests that the volcanism extended over 1.3 million km2 and blurted out around 6.6 million km3 of magma. Not for nothing have the products of this event been categorised as a Large Igneous Province. Its formation took place before the North Atlantic existed. It began to form as this precursor magmatic paroxysm waned.  Continued basaltic magma production created the ocean floor each side of the mid-Atlantic Ridge system to divide North America and Greenland from northern Europe. Sea floor spreading continues, rising above sea level in Iceland, which is underlain by a large mantle plume.

The plume beneath Iceland may have been present at a fixed position in the mantle for tens of million years. A hot spot over which plate movements have shifted lithosphere to be heated in a similar way to a sheet of paper dragged slowly over a candle flame. The Iceland plume may have left a hot-spot track similar to that involved in the Hawaiian island chain. The ocean floor to the east and west of Iceland is shallower and forms broad rides at right angles to the trend of the Mid-Atlantic Ridge system, judged to be such tracks that are still warm and buoyant after formation over the plume. But are there traces of earlier passage of drifting lithosphere over the plume. A way to detect older hot-spot tracks is through variations in geothermal heat flow through the continental surface, a linear pattern raising suspicions of such trace of passage. There is no sign to the east beneath Europe, so what about to the west. Greenland, being mainly blanketed in ice, is not a good place to conduct such a search as it would involve deep drilling through the ice at huge cost for each hole. But there is a roundabout way of obtaining geothermal information without even setting foot on Greenland’s icy wastes.

The geomagnetic field measured at the surface records anomalies in rock magnetisation in the solid Earth beneath. Near-surface variations due to large variations in rock types that comprise the continental crust appear as sharp, high frequency signals. Aeromagnetic surveys over Greenland are characterised by such noisy patterns because the subsurface geology is extremely complicated. However, the underlying upper mantle beneath all continents is geologically quite bland, but being uniformly rich in iron it contains a high proportion of magnetic minerals such as magnetite (Fe3O4). The upper mantle should therefore leave a signal in the surface geomagnetic field, albeit a commensurately bland one. Like radio signals that span a large range of wavelengths, Earth properties that vary spatially, such as the geomagnetic field, may be analysed using filters. Once the high-frequency geomagnetic features of the crust are filtered out what should remain is a signal that reflects the magnetic structure of the upper mantle. It should be more or less featureless, yet beneath Greenland it isn’t.

greenland hot spot

Estimated Curie depth variation below Greenland (left) converted to geothermal heat flow variation (right). (Credit: Martos et al. 2018; Figures 1b and 1c)

Magnetic anomalies are created by magnetisation induced in magnetic minerals in rocks by the Earth’s magnetic field. Yet minerals lose their ability to be magnetised at temperatures above a threshold known as the Curie point, which is 580 °C for magnetite, the most abundant magnetic mineral. Depending on the geothermal heat flow the Curie point is exceeded at some depth in the lithosphere. So magnetic anomalies can safely be assumed to be produced only by rocks above the so-called Curie depth. Yasmina Martos of the British Antarctic Survey (now at the University of Maryland) and scientists from Britain, the US and Spain used a complex procedure, including gravity data and a few direct measurements of heat flow below Greenland as well as filtered aeromagnetic data, to estimate the variation in Curie depth beneath the ice cap. (Martos, Y.M. et al. 2018. Geothermal heat flux reveals the Iceland hotspot track underneath Greenland. Geophysical Research Letters, v. 45, online publication; doi: 10.1029/2018GL078289). Using that as an inverse proxy for heat flow they were able to map the likely geothermal variation beneath the island. Rather than a random and narrow variation in depth, as would be expected for roughly uniform heat flow, the Curie depth varied in a non-random way by over 20 km, equivalent to roughly 20 mW m-2.

The shallowest Curie depth and highest estimated heat flow occurs in East Greenland around Scoresby Sund where the largest sequence of Palaeocene flood basalts occur. It is also on a line perpendicular to the mid-Atlantic Rift system that meets the active Iceland plume. Running north-west from Scoresby Sund is a zone of locally high estimated heat flow. Martos et al. suggest that this is the track of Greenland’s motion over the Iceland hot spot from about 80 Ma to the period of maximum on-shore volcanism and the start of sea-floor spreading at around 50 Ma.

A fully revised edition of Steve Drury’s book Stepping Stones: The Making of Our Home World can now be downloaded as a free eBook

The Great Barrier Reef and the Last Glacial Maximum (LGM)

The 2,300 km stretch of coral reefs and islands in the Coral Sea off the coast of Queensland, Australia is the largest single structure on Earth built by living organisms. The dominant reef builders are four hundred species of coral, most of which are a symbiosis that conjoins marine invertebrates in the class Anthozoa – part of the phylum Cnidaria – and photosynthesising single-celled eukaryotes known as dinoflagellates. These algae are mainly free-living marine plankton, some species of which evolved to be co-opted by corals. Their role in the symbiosis is complex; on the one hand providing energy in the form of sugars, glycerol and amino acids; on the other consuming the coral polyps’ carbon dioxide output. The latter is fixed, in the case of hard corals, by the secretion of calcium carbonate: the key to reef formation.

Marine photosynthesisers demand clear water in the upper few tens of metres of the sea, together with sunlight least affected by the atmosphere, as in the tropics where the sun rises to the zenith year round. The coral animal-algae connection limits reef growth to shallow seas, the top of the reef being close to mean sea level, sometimes rising above it at low tide. Hence the formation of fringing and barrier reefs. In the case of atoll reefs, a connection with sea-floor volcanoes that rose from hotspots on the oceanic abyssal plains to form active volcanic islands that began to sink once they became extinct. The pace at which reefs can grow is generally able to match that of crustal subsidence so that atolls remain throughout the Western Pacific. Reef growth is also capable of coping with global sea-level changes, so that the present top level of the Great Barrier Reef has been in balance with the generally static sea level of the Holocene since the ice caps of the last glaciation melted back to roughly their present extent about seven thousand years ago.

There are many cases of different reef levels on and around islands that match the sea-level fluctuations during the last Ice Age.  High-resolution bathymetry produced by multi-beam sonar across the eastern edge of parts of the Great Barrier Reef reveals a series of submerged terraces down to almost 120 m below modern sea-level (Yokoyama, Y. and 17 others 2018. Rapid glaciation and a two-step sea level plunge in the Last Glacial Maximum. Nature, v. 559, p. 603-607; doi:10.1038/s41586-018-0335-4). Globally, the LGM began at around 31 ka when sea level fell by about 40 metres, thanks to massive accumulation of glacial ice at high latitudes. Previous studies to chart the changes in global mean sea level during the LGM suggested a steady fall until about 20 ka, followed by rapid rise as ice caps melted back. The multinational team led by Yusuke Yokoyama of the University of Tokyo, obtained precise ages of coral samples from different depths in drill cores through the coral terraces. These data revealed a more complex pattern of sea-level change, in particular a hitherto unsuspected plunge between 21.9 and 20.5 ka of 20 m to reach -118 m. This immediately preceded the warming-related rise that continued to Holocene levels.

GBR Bathymetry

High-resolution sonar images of the sea floor at two sites on the eastern edge of Australia’s Great Barrier Reef. They show terraces associated with, the lowest of which corresponds to the Last Glacial Maximum. (Credit: Yokoyama et al. 2018, Figure 1)

Curiously, this massive phenomenon is not shown by sea-level estimates derived from the records of changing oxygen isotopes in ocean-floor sediments and ice cores. The team’s complex modelling incorporated global changes in land and sea-bed levels, and thus changes in the volume of the ocean basins, due to the changing isostatic effects of both ice-cap and ocean masses. From these it is possible to reach an interesting conclusion (Whitehouse, P. 2018. Ancient ice sheet had a growth spurt. Nature, v. 603, p. 487-488; doi:10.1038/d41586-018-05760-3). Rather than an increase in snowfall onto ice-caps, their retreat may have been hindered by thickening of marginal floating ice shelves that created buttresses around Antarctica and the northern ice sheets. Slowed glacial flow to the oceans could have promoted ice sheet growth for a time as melting of calved icebergs was hindered, especially in the case of the ice sheet over northern North America. Certainly, this crucial climatic turning point was a lot more complex than previously believed.

Technical problem with Earth-pages News

Followers of Earth-pages News have been unable to access the site for more than three weeks due to a technical problem that disabled the earth-pages.co.uk link. The fault has been found and remedied. Apologies for the loss of service.

Steve Drury

The earliest humans to leave Africa, in China

Since discovery in 2010 that remains of the genus Homo at Dmanisi in Georgia were about 1.85 Ma old several more instances of bones and stone tools a few hundred thousand years less than that age have turned up in China. All have been ascribed to H. erectus, although there are dissimilarities with African examples of the species and its predecessor H. ergaster. The technological breakthrough that led H. erectus/ergaster to knap the distinctive bifacial or Acheulean ‘handaxe’ was achieved at about the same time as the Dmanisi humans left Africa, yet there is no sign of such tools in eastern Asia until much later, most ancient artefacts there being of a more primitive, ‘Oldowan’ type. That is perhaps because more serviceable tools were fashioned from less durable materials than fine-grained rock that takes an edge. Maybe the skills were lost en route or the forebears of eastern Asian tool makers left Africa before the breakthrough. At any rate, the genus Homo is generally conferred on any being that had a tool-making culture, so that the presence of tools alone in a sedimentary deposit signifies that humans probably once inhabited that site. The earliest tools (3.3 Ma) from the Turkana area of Kenya were made half a million years before the first known appearance of well-documented remains of an un-named member of the genus Homo at  Ledi-Geraru in Afar, Ethiopia (2.8 Ma). At sites in Olduvai, Tanzania (1.9 Ma) and Turkana, Kenya (2.1 Ma) fossils of Homo habilis are found in association with ‘Oldovan’ stone tools.

Sites where early human fossils an tools have been found. (Credit: John Kappelman, Nature 2018; doi:10.1038/d41586-018-05293-9)

The latest development in the origin and wanderings of early humans has emerged from studies of a thick deposit of windblown silt or loess that makes up the Loess Plateau (Latitude 34°N) between the Yellow and Yangtze Rivers in central-east China. The loess is divided into several sequences by thin soil horizons (palaeosols). The entire stratigraphy contains tiny grains of iron minerals whose magnetic polarity was aligned with the Earth’s magnetic field at the time of deposition. This allows periods of normal and reversed geomagnetic polarity to be detected with considerable precision. Measurements have been taken at 10 cm intervals throughout the loess, to give an unbroken record of events throughout the Pleistocene Epoch that can be matched to a dated reference called the geomagnetic polarity timescale (GPTS). Palaeoclimate researchers have been able to show that the layers of loess correspond to successive glacial stages, whereas the palaeosol represent warm interglacials, exactly as recorded in sea-floor sediment profiles   A team of archaeologists from China and Britain have found primitive, Oldowan-type, artefacts in both the loess and palaeosol horizons at 17 different levels (Zhu, Z. and 10 others 2018. Hominin occupation of the Chinese Loess Plateau since about 2.1 million years ago. Nature, v. 559 advance publication online doi:10.1038/s41586-018-0299-4. See also). The artefacts are positioned at levels dated at between 1.26 to 2.12 Ma by the palaeomagnetic dating (from the Réunion to Cobb Mountain normally polarized subchrons).

Primitive stone tool (four sides shown) from the Loess Plateau of China. (Credit: Zhu et al./Nature 2018)

So, in both cool and warm conditions (34°N has cold winters today) toolmakers were regularly present in central, east China for almost 900 ka. The earliest must have made a 14 thousand km trek from tropical Africa across several climatic zones, and been physically, cognitively and technologically capable of surviving and reproducing for the one- to three-thousand years the journey must have taken (based on a dispersal rate of 5 to 15 km a year estimated from modern hunter-gatherers’ activities). Either there were repeated migrations of this scale or a pioneer population survived on or within reach of the loess steppe for hundreds of thousand years. The earliest emigrants would have been neither Homo erectus nor ergaster, for neither had evolved. Their age suggests that they may have been H. habilis, a view that has been expressed for the ancestors of the diminutive H. floresiensis known to have been present of the Indonesian island of Flores for around 700 ka. Until actual fossils are unearthed – not easy as the sequence is exposed in very steep slopes characteristic of dissected loess terrains – who the first occupants of China were remains mysterious. But one thing stands out: If early humans from that long ago could arrive, survive and prosper half a world away from their place of origin, then paleoanthropologists must consider the possibility of continual diffusion of the genus Homo away from its African origins once equipped with the ability to make tools. China may become the focus for early-human research as it became for that into the origins of birds and feathered dinosaurs.

You can read more about early humans and their evolution here.

A fully revised edition of Steve Drury’s book Stepping Stones: The Making of Our Home World can now be downloaded as a free eBook

A new kind of seismology

The detection and analysis of earthquake waves has played a major role in the study of how the Earth works for more than a century. Seismology has laid bare the deep structure of our planet. Using records from seismographs that showed the arrival times at different sites of body waves propagated by a 1909 earthquake near Zagreb Croatian scientist Andrija Mohorovičić deduced that the upper Earth was layered. His name is given to the boundary between the crust and underlying mantle; the Mohorovičić Discontinuity (Moho for short). Applying the principles of wave reflection and refraction to wave-arrival times from major seismic events at seismographic stations across the Earth’s surface resulted in the discovery of deeper discontinuities in the mantle and the structure of the core. As the number of stations increased, largely as a result of the need to detect and pin-point tests of nuclear weapons, reversing the principles enabled the 3-D positions of lesser events to be plotted. The resulting swathes of seismicity defined the boundaries of tectonic plates, and from the varying depths at which earthquakes occurred came ideas about their nature; especially important for the mapping of subduction zones. Expansion and standardisation of the global seismographic network and the millions of records that it has produced, together with advances in their digital analysis, has created the current method of charting deep-Earth properties using seismic tomography. A remarkable outcome of such studies is the strikingly named ‘The Atlas of the Underworld’.

Up to now there has been a limit to the scope of such studies, particularly their resolution of features in the Earth’s mantle. Almost all the recording stations are on land, leaving the 70% of the surface covered by oceans devoid of data. Yet that might be set to change. The building of the Internet’s World Wide Web has largely depended on a growing network of telecommunications optic-fibre cables that criss-cross the oceans as well as the continents, stretching about a million kilometres. Using lasers at each end of a cable and interferometric analysis of two light signal that takes up a tiny proportion of the cable’s bandwidth it is possible to detect noise due to disturbances of the cable that result from earthquakes. On land this is compromised by local effects, such as traffic noise, but the ocean floors are remarkable quiet. Giuseppe Marra of Britain’s National Physical Laboratory discovered the potential of using optic fibre while testing a 79 km length cable linking atomic clocks at NPL and Reading (Marra, G. And 11 others 2018. Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables. Science online publication; doi:10.1126/science.aat4458). Purely by chance he observed unusually high spikes in noise during 2016. By no stretch of the imagination could they have been caused by events along the course of the cable. Curious, he eventually tracked the signals down to a series of earthquakes beneath Norcia in central Italy that cause death and destruction between 24 August and 30 October 2016. With a magnitude of 6.5, the last was the largest seismic event in Italy for 36 years. Subsequently, he and colleagues picked up the signal of a far less energetic event beneath the Mediterranean Sea (magnitude 3.4) from a cable linking Malta and Sicily.

F1.large

Map of submarine optic-fibre cables (credit: TeleGeography’s Telecom Resources)

With records from three suitably equipped cables an earthquake focus could be located precisely using triangulation. Together with the recorded signals, it would also be possible to use high magnitude earthquakes detected by optic-fibre cables to add to conventional seismic tomography, thereby sharpening the 3-D images of the deep Earth, which at present are plagued by blurring of much useful detail. Since both submarine and terrestrial cables might be used, such a method may become a bonanza for geophysicists

See also: Hand, E, 2018. Seafloor fibre optic cables can listen for earthquakes. Science, v. 360, p. 1160.

A fully revised edition of Steve Drury’s book Stepping Stones: The Making of Our Home World can now be downloaded as a free eBook

A hint of life on Mars

We can be certain that life was around on Planet Earth around 3.5 billion years ago, if not before, because unmetamorphosed sedimentary rocks of that age from Western Australia in which stromatolites occur contain a black to brownish, structureless material known as kerogen. The material is a hodgepodge of organic compounds that form during the breakdown of proteins and carbohydrates in living matter. It is the source material for petroleum compounds when kerogen-rich rocks are heated during burial. The vast bulk of organic compounds preserved on Earth are in the form of ancient kerogen, whose mass exceeds that of the living biosphere by about 10 thousand times. A good sign that it does represent ancient life lies in sedimentary kerogen’s depletion in ‘heavy’ 13C compared with 12C (negative values of δ13C), because in metabolising carbon dioxide living cells preferentially use the lighter of these two isotopes. Conceivably, 13C can be removed from inorganic carbon by metamorphic processes, so low values of δ13C in metasediments from West Greenland might be organically derived or, equally, they might not.

At the time of writing, geoscientists specialising in Martian matters had become excited by some results from the geochemical system aboard the surviving functional NASA rover. Curiosity has slowly been making its way up Mount Sharp at the centre of Gale Crater near to Mars’s equator. Analysis of high-resolution images taken from orbit suggest that the rocks forming the mountain are sediments. the lowest and oldest strata are suspected to have been deposited in a crater lake when conditions were warmer and wetter on Mars, about 3 billion years ago. Curiosity was equipped with a drill to penetrate and sample sediment unaffected by ultraviolet radiation that long ago would have destroyed any hydrocarbons exposed at the surface. In late 2016, before the rover had reached the lake sediments, the drill’s controller broke down. Since then, Curiosity had moved on to younger, less promising sediments. More than a year later mission engineers fixed the problem and the rover backtracked to try again. Heating the resulting samples to almost 900°C yields any volatile components as a gas to a mass spectrometer, results from which give clues to the molecules released.

‘Selfie’ of Curiosity rover en route to Mount Sharp. (Credit: NASA)

The Sample Analysis at Mars (SAM) team report a range of thiophenic, aromatic and aliphatic molecules of compounds of carbon, hydrogen and sulfur (Eigenbrode, J.L and 21 others 2018. Organic matter preserved in 3-billion-year-old mudtsones at Gale crater, Mars. Science, v. 360, p. 1096-1101; doi:10.1126/science.aas9185). The blend of pyrolysis products closely resembles those which form from heated terrestrial kerogens and coals, but also from pyrolysis of carbonaceous chondrite meteorites. So, the presence of Martian kerogen is not proven. But the results are so promisingly rich in hydrocarbons that another weapon in SAM’s armoury will be deployed, dissolving organic compounds directly from the drill cuttings. This may provide more convincing evidence of collagen. Yet only when samples are returned to labs on Earth will there be a chance to say one way or the other that there was once life on Mars. The results reported in Science’s 8 June issue will surely add weight to the clamour for the Mars 2020 sample-return mission to be funded. Whether or not there is life on Mars demands a great deal more investment still…

A fully revised edition of Steve Drury’s book Stepping Stones: The Making of Our Home World can now be downloaded as a free eBook

The great Cambrian unconformity

My first field trip from the Geology Department at the University of Birmingham in autumn 1964 was located within hooter distance of the giant British Leyland car plant at Longbridge. It involved a rubbish-filled linear quarry behind a row of shops on the main road through south Birmingham. Not very prepossessing but it clearly exposed a white quartzite, which we were told was a beach deposit laid down by a massive marine transgression at the start of the Cambrian. An hour later we were shown an equally grim exposure of weathered volcanic rocks in the Lickey Hills; they were a sort of purple brown, and said to be Precambrian in age. Not an excellent beginning to a career, but from time to time other Cambrian quartzites sitting unconformably on Precambrian rocks entered our field curriculum: in the West Midlands, Welsh Borders and much further afield in NW Scotland, as it transpired on what had been two separate continental masses of Avalonia and Laurentia. This had possibly been a global marine transgression.

In North America, then the Laurentian continent, what John Wesley Powell dubbed the Great Unconformity in the Grand Canyon has as its counterpart to the Lickey Quartzite the thrillingly named Tonto Group of the Lower Cambrian resting on the Vishnu Schists that are more than a billion years older. Part of the Sauk Sequence, the Tonto Group is, sadly, not accompanied by the Lone Ranger Group, but the Cambrian marine transgression crops out across the continent. In fact it was a phenomenon common to all the modern continents. Global sea level rose relative to the freeboard of the continents then existing. A recent study has established the timing for the Great Unconformity in the Grand Canyon by dating detrital zircons above and below the unconformity (Karlstrom, K, et al. 2018. Cambrian Sauk transgression in the Grand Canyon region redefined by detrital zircons. Nature Geoscience, v. 11, p. 438-443; doi:10.1038/s41561-018-0131-7). Rather than starting at the outset of the Cambria at 542 Ma, the marine transgression was a protracted affair that began around 527 Ma with flooding reaching a maximum at the end of the Cambrian.

Extensive flooding of the continents at the end of the Cambrian (credit: Ron Blakey , Colorado Plateau Geosystems)

It seems most likely that the associated global rise in sea level relative to the continents was a response to the break-up of the Rodinia supercontinent by considerable sea-floor spreading. The young ocean floor, having yet to cool to an equilibrium temperature, would have had reduced density so that the average depth of the ocean basins decreased, thereby flooding the continents. The creation of vast shallow seas across the continents has been suggested to have been a major factor in the explosive evolution of Cambrian shelly faunas, partly by expanding the range of ecological niches and partly due to increased release of calcium ions to to seawater as a result of chemical weathering.

A fully revised edition of Steve Drury’s book Stepping Stones: The Making of Our Home World can now be downloaded as a free eBook