‘Hobbits’ found in the Philippines

The earliest signs that hominins had colonised the island of Luzon in the Philippines took the form of crude stone tools found around half a century ago. Re-excavation of one of the sites uncovered yet more tools buried in a river-channel deposit, along with remains of a butchered rhinoceros dated at around 700 ka by two methods (see Clear signs of a hominin presence on the Philippines at around 700 ka May 2018). The primitive nature of the tools and their age suggested that Asian Homo erectus had managed to reach the Philippine archipelago, despite it being separated from larger islands by deep water.  Even during large falls in sea level (up to 130 m) during glacial periods that exposed Sundaland, which linked the larger islands of Indonesia to mainland Eurasia, at best only a narrow stretch of sea (~20 km) connected the Philippines to the wider world. For most of the time since the earliest known colonisation any hominins on the islands would have been cut off from other populations.

Philippines

Topography of the Philippines, showing location of the Kalinga site. Palest blue sea may have been above sea level only during extreme glacial maxima. (credit: Wikipedia)

The first hominin fossil found by archaeologists in 2007 was a 67 ka old toe bone (metatarsal) in cave sediments from Northern Luzon. It was undoubtedly from Homo, but which species was unclear.  More recent excavations added a mere 12 fossil fragments, probably from three individuals; 7 teeth, 4 adult finger- and toe bones and part of the femur of a juvenile (Détroit, F. and 8 others 2019. A new species of Homo from the Late Pleistocene of the Philippines. Nature, v.  568, p. 181–186; DOI: 10.1038/s41586-019-1067-9). The finger bones, being curved, are unlike those of modern humans and H. erectus. The teeth are even more different; for instance the premolars show two or three roots – ours have but one – and their unusually tiny molars only a single root. The combined features are sufficiently distinct to suggest a separate species (H. luzonensis). The small teeth may indicate that the adults may have been even smaller that the ‘Hobbits’ of Flores and anatomically different.

Like H. floresiensis, as a result of isolation the new human species probably evolved to become small, possibly from very low number of H. erectus original colonisers. But an even stranger possibility is suggested by their curved toe and finger bones. They may have been habitual climbers as much as walkers – unlike us and H. erectus. Could that indicate that their ancestors left Africa already distinct from the rest of Late Pleistocene humans? That is also a disputed hypothesis for the origins of H. floresiensis  remains of whom are more complete. Similarly, they pose the issue of how their progenitors managed to get to the archipelago: deliberately by boat or being carried there clinging in desperation to vegetation torn-up by tsunamis and transported seawards by the back-wash.

A bad day at the end of the Cretaceous

The New Yorker magazine normally features journalism, commentary, criticism, essays, fiction, satire, cartoons, and poetry. So it is odd that this Condé Nast glossy for the chattering classes snaffled online what may be the geological scoop of the 21st century so far (Preston, D. 2019. The day the dinosaurs died. The New Yorker 8 April 2019 issue). The paper that lies at the centre of the story had not been published and nor had the issue of The New Yorker in which Douglas Preston’s story was scheduled for publication. The very day (29 March 2019) that Britain was thwarted of its Brexit moment the world’s media was frothing with news about the end of another era; the Mesozoic. The paper itself was published online on April Fools’ Day with a title that is superficially arcane (DePalma, R.A. and 11 others 2019. A seismically induced onshore surge deposit at the KPg boundary, North Dakota. Proceedings of the National Academy of Science, early online publication;p DOI: 10.1073/pnas.1817407116). But its contents are the stuff of dreams for any aspiring graduate student of palaeontology; the Indiana Jones opportunity.

An ‘onshore surge deposit’ occurs at many Western Hemisphere sites where the K-Pg boundary outcrops in terrestrial or shallow-marine sediments. The closer to the Chicxulub crater north of Mexico’s Yucatan Peninsula the more obvious they are, for they result from the tsunamis that immediately followed the asteroid impact. Lead author Robert DePalma, now of the University of Kansas, became focussed on the dinosaur-rich, Late Cretaceous Hell Creek Formation of North Dakota as an undergraduate. Accepted for graduate studies he was directed to a project on the fauna of lacustrine sediments close to the K-Pg boundary layer, which is well-known in the area, and that’s what he has been engaged with ever since. In 2012 he was guided to a remarkable locality by a rockhound, disappointed because it exposed extremely fossil-rich sediments but was so soft that none could be extracted intact with a hammer and chisel. It turned out to have resulted from a surge along a sinuous river that had washed debris onto a point-bar deposit at the inside of a meander. The debris includes remains of both marine and terrestrial organisms and shows clear signs of having been swept upriver, i.e. from the sea and possibly the result of a tsunami. Being capped by a thin, iridium-rich layer of impactite, the 1.5 metre surge deposit is part of the K-Pg boundary layer, and probably represented only a few hours before being blanketed by ejecta.

This Event Deposit comprises two graded, fining-upwards units and thus two distinct surges, with a thin mat of vegetation fragments immediately below the Ir-rich clay cap that also contains sparse shocked quartz grains. The Event Deposit contains altered glass spherules throughout, which cgradually become smaller higher in the 1.5 m sequence. Some of the larger spherules produced ‘micro-craters’ in the sediments. Fossils include marine ammonite fragments (some still nacreous) and freshwater fish (paddlefish and sturgeon). The fish are so complete as to suggest an absence of scavengers. The paper itself contains little of the information that dominated Preston’s New Yorker article and the global media coverage. This included clear evidence that the fish ingested spherules, found clogging their gills and possible causing their death. There are examples of spherules embedded in amber formed from plant sap, which suggests sub-aerial fall of ejecta, and among the marine faunal samples are teeth of fish and reptiles (see DePalma et al’s Supplemental Data). The most startling finds reported by Preston are nowhere to be found in DePalma et al’s paper or its supplement. These include possible dinosaur feathers; a fragment of ceratopsian dinosaur skin attached to a hip bone; a burrow containing a mammal jaw that penetrates the K-Pg boundary layer; dinosaur remains, including an egg (complete with embryo) and hatchlings of dinosaurian groups found at deeper levels in the Hell Creek Formation. Previously, palaeontologists had found no dinosaur remains less than 3 m below the K-Pg boundary layer anywhere on Earth, prompting the suggestion that they had become extinct before the near-instantaneous effects of Chicxulub, and were perhaps victims of the general effects of the Deccan Trap volcanism. If verified in later peer-reviewed publications, DePalma et al’s work would help resolve the gradual vs sudden hypotheses for the end-Cretaceous mass extinction.

gill spherules

X-ray and CT images of impact spherules in the gills of a fossil sturgeon from the Tanis K-Pg site, North Dakota (credit DePalma et al. 2019; Fig. 6)

Preston reports some academic scepticism about DePalma’s work, and emphasises his showmanship at conferences; for instance, he named the site ‘Tanis’ after the ancient city in Egypt featured in the 1981 film Raiders of the Lost Ark. There are geophysical queries too. If the inundation was by the on-shore effects of a tsunami it doesn’t tally with the abundance of ejecta fallout of glass spherules: tsunamis propagate in shallow seawater at speeds less than 50 km h-1  and more slowly still in channels, whereas impact ejecta travel much faster. This is acknowledged in the paper’s supplement, and the paper refers to a seiche wave activated by seismic waves associated with the Chicxulub impact which could have arrived in North Dakota at about the same time as its ejecta blanket. The paper’s authorship includes the imprimatur of other authorities in different geoscientific fields, including Walter Alvarez, jointly famed with his father Luis for the discovery of the K-Pg boundary horizon and its impact connections in 1981. So it carries considerable weight. No doubt further comment and further papers on the Tanis site will emerge: DePalma has yet to complete his PhD. It may become the lagerstätte of the K-Pg extinction; in DePalma’s words ‘It’s like finding the Holy Grail clutched in the bony fingers of Jimmy Hoffa, sitting on top of the Lost Ark.’ …

Gravity signals of earthquakes

A sign that an earthquake is taking place is pretty obvious: the ground moves. Seismometers are now so sensitive that they record significant seismic events at the far side of the world. The Richter magnitude scale commonly used to assign the power of an event is logarithmic, and the difference between each unit represents an approximately 32-fold change in the energy released at the source, so that a magnitude 6.0 earthquake is 32 times more powerful than one rated as magnitude 5.0. Because seismic motion affects a mass of rock it also perturbs the gravitational field. So, theoretically, gravimeters should also be able to detect an earthquake. Seismic waves travel at a maximum speed of about 6 to 8 km s-1 about 20 times the speed of sound, yet changes in the gravitational field propagate at the speed of light, i.e. almost instantaneously by comparison. The first ground disturbances of the magnitude 9.0 Tohoku-Oki earthquake of NE Japan on 11 March 2011 hit Tokyo about 2 minutes after the event began offshore. Although that is a quite short time it would be sufficient for people to react and significantly reduce the earthquake’s direct impact on many of them. A seismic gravity signal would give that warning. The full horror of Tohoku-Oki was unleashed by the resulting tsunami waves, whose speed in the deep ocean water off Japan was about 800 km hr-1 (0.22 km s-1). An almost real-time warning would have allowed 40 times more time for evasion.

Tsunami Punx

Devastation in NE Japan caused by the Tohoku-Oki tsunami in March 2011

Japan is particularly well endowed with advanced geophysical equipment because of its notorious seismic and volcanic hazards. The first data to be analysed after Tohoku-Oki were understandably those from Japan’s large array of seismometers. The records from two super-sensitive gravimeters, between 436 and 515 km from the epicentre, were examined only recently. These instruments measure variations in gravity as small as a trillionth of the average gravitational acceleration of the Earth using a superconducting sphere suspended in a magnetic field, capable of detecting snow being cleared from a roof. Masaya Kimura and colleagues from Tokyo University and other geoscientific institutes in Japan undertook the analyses of both seismic and gravity data (Kimura, M. et al. 2019. Earthquake‑induced prompt gravity signals identified in dense array data in Japan. Earth Planets and Space, v. 71, online publication. DOI: 10.1186/s40623-019-1006-x). The gravimeter record did show a statistically significant perturbation at the actual time of the earthquake, albeit after complex processing of both gravity and seismographic data.

That only 2 superconducting gravimeters detected the event in real-time is quite remarkable, despite the need for a great deal of processing. It amounts to a test of the concept that such instruments or others based on different designs and deployed more widely may eventually be deployed to give prompt warnings of seismic events that could save thousands.

The Cambrian Explosion: a broader view

The base of the Cambrian has long been defined as the level where abundant shelly fossils and most phyla first occur in the stratigraphic record. That increase in diversity led to the nickname ‘Cambrian Explosion’, despite the fact that sheer numbers and diversity of lesser taxa took a long time to rise to ‘revolutionary’ levels. Yet a great deal of animal evolution was going on during the preceding Proterozoic Era that was revealed once palaeobiological research blossomed in rocks of that age range. Today, the earliest occurrences, or at least hints, of quite a few phyla can be traced to the last 100 Ma of the Precambrian. Clearly, the Cambrian Explosion needs a fresh look now that so many data are in. Any palaeontologist would benefit from reading a Perspective article in the latest issue of Nature Ecology & Evolution (Wood, R. and 8 others 2019. Integrated records of environmental change and evolution challenge the Cambrian Explosion. Nature Ecology & Evolution, v. 3, online publication; DOI: 10.1038/s41559-019-0821-6)

Rachel Wood of Edinburgh University and co-authors working elsewhere in Britain, Canada, Japan and Finland sift the growing wealth of fossil and trace-fossil evidence that predate the start of the Cambrian. They also consider the geochemical events that stand out in the Ediacaran Period that succeeds the Snowball Earth events of the Cryogenian. Their account recognises that the geochemical changes – principally a series of carbon-isotope (δ13C) excursions – may have resulted from tectonic changes. The carbon-isotope data mark a series of short-lived penetrations of oxygen-rich conditions deep into the ocean water column and longer periods of oxygen-starved deep water. Such perturbations in oceanic redox conditions ‘speed-up’ thorough the late-Ediacaran into the Cambrian: a profound and protracted transition from the Neoproterozoic world to that of the Phanerozoic. Over the same time span there is a ‘progressive addition of biological novelty’ in the form and function of the evolving biota, so that  each successive assemblage builds on the earlier advances.

The fossil evidence suggests that the earliest Ediacaran fauna was metazoan but with no sign of bilaterian affinities (i.e. having ‘heads’ and ‘tails’). The rise of bilaterians of which most animal phyla are members occupied the later Ediacaran , with the first evidence of locomotion – and almost by definition animals with ‘fore’ and ‘aft’ – being around 560 Ma. Each discrete shift from more to less oxic conditions in the oceans seems to have knocked-back animal life, the reverse being accompanied by diversification of survivors. Oxygenation at the very start of the Cambrian marked the beginnings of a diversification clearly manifested by animals capable of biomineralisation and the secretion of hard parts with clear patterns. Such ‘shelly faunas’ are present in the latest Ediacaran sediments but with a multiplicity of seemingly arbitrary forms, although trace fossils suggest soft-bodied animals did have definite morphological pattern.

407458aa.2

Diorama of the Lower Cambrian Qingjiang fauna (Credit: Fu et al. 2019; Fig 4)

Adding yet more information to early metazoan history is the recently discovered Cambrian Qingjiang lagerstätte of Hubei Province in southern China dated at 518 Ma; similar in its exquisite preservation to the Burgess (508 Ma) and Chengjiang (518 Ma) biotas (Fu, D. and 14 others 2019. The Qingjiang biota—A Burgess Shale-type fossil Lagerstätte from the early Cambrian of South China. Science, v. 363, p. 1338-1342; DOI: 10.1126/science.aau8800). The two previously discovered Cambrian lagerstättes are notable for their very diverse arthropod and sponge faunas. That at Qingjiang adds an abundance of cnidarians, jellyfish, sea anemones, corals and comb jellies, rare in the other two biotas, plus kinorhynchs or mud dragons – moulting invertebrates known only from Cambrian and modern sediments. The fossils at Qingjiang include only about 8% of the taxa of the same age found at Chengjiang, suggesting different environments

The idea of a sudden, discrete explosive event in the history of life, which coincided with the start of the Cambrian, now seems difficult to support. This should not damage the status of 541 Ma as the start of the Phanerozoic because stratigraphy basically gives form to the passage of time and has done since its emergence in the 19th century, so keeping the names of the divisions is essential to continuity.

Related articles: Daley, A.C. 2019. A treasure trove of Cambrian fossils. Science, v. 363, p. 1284-1285; DOI: 10.1126/science.aaw8644. Switek, B. 2019. Fossil Treasure Trove of Ancient Animals Unearthed in China (Smithsonian.com)

Tectonics and glacial epochs

Because the configuration of continents inevitably affects the ocean currents that dominate the distribution of heat across the face of the Earth, tectonics has a major influence over climate. So too does the topography of continents, which deflects global wind patterns, and that is also a reflection of tectonic events. For instance, a gap between North and South America allowed exchange of the waters of the Pacific and Atlantic Oceans throughout the Cenozoic Era until about 3 Ma ago, at the end of the Pliocene Epoch, although the seaway had long been shallowing as a result of tectonics and volcanism at the destructive margin of the eastern Pacific. That seemingly minor closure transformed the system of currents in the Atlantic Ocean, particularly the Gulf Stream, whose waxing and waning were instrumental in the glacial-interglacial cycles that have persisted for the last 2.5 Ma. This was partly through its northward transport of saltier water formed by tropical evaporation that cooling at high northern latitudes encouraged to sink to form a major component of the global oceanic heat conveyor system.   Another example is the rise of the Himalaya following India’s collision with Eurasia that gave rise to the monsoonal system  dominating the climate of southern Asia. The four huge climatic shifts to all-pervasive ice-house conditions during the Phanerozoic Eon are not explained so simply: one during the late-Ordovician; another in the late-Devonian; a 150 Ma-long glacial epoch spanning much of the Carboniferous and Permian Periods, and the current Ice Age that has lasted since around 34 Ma. Despite having been at the South Pole since the Cretaceous Antarctica didn’t develop glaciers until 34 Ma. So what may have triggered these four major shifts in global climate?

Five palaeoclimatologists from the University of California and MIT set out to find links, starting with the most basic parameter, how atmospheric greenhouse gases might have varied. In the long term CO2 builds up through its emission by volcanoes. It is drawn down by several geological processes: burial of carbon and carbonates formed by living processes; chemical weathering of silicate minerals by CO2 dissolved in water, which forms solid calcium carbonate in soil and carbonate ions in seawater that can be taken up and buried by shell-producing organisms. Rather than comparing gross climate change with periods of orogeny and mountain building, mainly due to continent-continent collisions, they focused on zones that preserve signs of subduction of oceanic lithosphere – suture zones (Macdonald,F.A. et al. 2019. Arc-continent collisions in the tropics set Earth’s climate state. Science, v. 363 (in press); DOI: 10.1126/science.aav5300 ). Comparing the length of all sutures active at different times in the Phanerozoic with the extent of continental ice sheets there is some correlation between active subduction and glaciations, but some major misfits. Selecting only sutures that were active in the tropics of the time – the zone of most intense chemical weathering – results in a far better tectonic-climate connection. Their explanation for this is not tropical weathering of all kinds of exposed rock but of calcium- and magnesium-rich igneous rocks; basaltic and ultramafic rocks. These dominate oceanic lithosphere, which is exposed to weathering mainly where slabs of lithosphere are forced, or obducted, onto continental crust at convergent plate margins to form ophiolite complexes. The Ca- and Mg-rich silicates in them weather quickly to take up CO2 and form carbonates, especially in the tropics. Through such weathering reactions across millions of square kilometres the main greenhouse gas is rapidly pulled out of the atmosphere to set off global cooling.

407458aa.2

Top – variation in the total length of active, ophiolite-bearing sutures during the Phanerozoic; middle – length of such sutures in the tropics; bottom – extent of Phanerozoic glaciers. (Credit: Macdonald et al. 2019; Fig.2

Rather than the climatic influence of tectonics through global mountain building, the previous paradigm, Macdonald and colleagues show that the main factor is where subduction and ophiolite obduction were taking place. In turn, this very much depended on the configuration of continents on which ophiolites can be preserved. The most active period of tectonics during the Mesozoic, as recorded by the global length of sutures, was at 250 Ma – the beginning of the Triassic Period – but they were mainly outside the tropics, when there is no sign of contemporary glaciation. During the Ordovician, late-Devonian and Permo-Carboniferous ice-houses active sutures were most concentrated in the tropics. The same goes for the build-up to the current glacial epoch.

The mid-Pleistocene transition

As shown by oxygen-isotope records from marine sediments, before about 1.25 Ma global climate cycled between cold and warm episodes roughly every 41 ka. Between 1.25 to 0.7 Ma these glacial-interglacial pulses lengthened to the ~100 ka periods that have characterised the last seven cycles that were also marked by larger volume of Northern Hemisphere ice-sheet cover during glacial maxima. Both periodicities have been empirically linked to regular changes in the Earth’s astronomical behaviour and their effects on the annual amount of energy received from the Sun, as predicted by Milutin Milankovich. As long ago as 1976 early investigation of changes of oxygen isotopes with depth in deep-sea sediments had revealed that their patterns closely matched Milankovich’s  hypothesis. The 41 ka periodicity matches the rate at which the Earth’s axial tilt changes, while the ~100 ka signal matches that for variation in the eccentricity of Earth’s orbit. 19 and 24 ka cycles were also found in the analysis that reflect those involved in the gyroscope-like precession of the axis of rotation. Surprisingly, the 100 ka cycling follows by far the weakest astronomical effect on solar warming yet the climate fluctuations of the last 700 ka are by far the largest of the last 2.5 million years. In fact the 2 to 8 % changes in solar heat input implicated in the climate cycles are 10 times greater than those predicted even for times when all the astronomical influences act in concert. That and other deviations from Milankovich’s hypothesis suggest that some of Earth’s surface processes act to amplify the astronomical drivers. Moreover, they probably lie behind the mid-Pleistocene transition from 41 to 100 ka cyclicity. What are they? Changes in albedo related to ice- and cloud cover, and shifts in the release and absorption of carbon dioxide and other greenhouse gases are among many suggested factors. As with many geoscientific conundrums, only more and better quality data about changes recorded in sediments that may be proxies for climatic variations are likely to resolve this one.

Adam Hazenfratz of ETH in Zurich and colleagues from several other European countries and the US have compiled details about changing surface- and deep-ocean temperatures and salinity – from δ18O and Mg/Ca ratios in foraminifera shells from a core into Southern Ocean-floor sediments – that go back 1.5 Ma (Hazenfratz, A.P. and 9 others 2019. The residence time of Southern Ocean surface waters and the 100,000-year ice age cycle. Science, v. 363, p. 1080-1084; DOI: 10.1126/science.aat7067). Differences in temperature and salinity (and thus density) gradients show up at different times in this critical sediment record. In turn, they record gross shifts in ocean circulation at high southern latitudes that may have affected the CO2 released from and absorbed by sea water. Specifically, Hazenfratz et al. teased out fluctuations in the rate of  mixing of dense, cold and salty water supplied to the Southern Ocean by deep currents with less dense surface water. Cold, dense water is able to dissolve more CO2 than does warmer surface water so that when it forms near the surface at high latitudes it draws down this greenhouse gas from the atmosphere and carries it into long-term storage in the deep ocean when it sinks. Deep-water formation therefore tends to force down mean global surface temperature, the more so the longer it resides at depth. When deep water wells to the surface and warms up it releases some of its CO2 content to produce an opposite, warming influence on global climate. So, when mixing of deep and surface waters is enhanced the net result is global warming, whereas if mixing is hindered global climate undergoes cooling.

407458aa.2

The Southern Ocean, where most dissolved and gaseous carbon dioxide are emitted and absorbed by seawater (Credit: British Antarctic Survey)

The critical factor in the rate of mixing deep with surface water is the density of that at the surface. When its salinity and density are low the surface water layer acts as a lid on what lies beneath, thereby increasing the residence time of deep water and the CO2 that it contains. This surface ‘freshening’ in the Southern Ocean seems to have begun at around 1.25 Ma and became well established 700 ka ago; that is, during the mid-Pleistocene climate transition. The phenomenon helped to lessen the greenhouse effect after 700 ka so that frigid conditions lasted longer and more glacial ice was able to accumulate, especially on the northern continents. This would have made it more difficult for the 41 ka astronomically paced changes in solar heating to have restored the rate of deep-water mixing to release sufficient CO2 to return the climate to interglacial conditions That would lengthen the glacial-interglacial cycles. The link between the new 100 ka cyclicity and very weak forcing by the varying eccentricity of Earth’s orbit may be fortuitous. So how might anthropogenic global warming affect this process? Increased melting of the Antarctic ice sheet may further freshen surface waters of the Southern Ocean, thereby slowing its mixing with deep, CO2-rich deep water and the release of stored greenhouse gases. As yet, no process leading to the decreased density of surface waters between 1.25 and 0.7 Ma has been suggested, but it seems that something similar may attend global warming.

Related articles: Menviel, L. 2019. The southern amplifier. Science, v. 363, p. 1040-1041; DOI: 10.1126/science.aaw7196; The deep Southern Ocean is key to more intense ice ages (Phys.org)

Better dating of Deccan Traps, and the K-Pg event

Predictably, the dialogue between the supporters of the Deccan Trap flood basalts and the Chicxulub impact as triggers that were responsible for the mass extinction at the end of the Mesozoic Era (the K-Pg event) continues. A recent issue of Science contains two new approaches focussing on the timing of flood basalt eruptions in western India relative to the age of the Chicxulub impact. One is based on dating the lavas using zircon U-Pb geochronology (Schoene, B. et al. 2019. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science, v. 363, p. 862-866; DOI: 10.1126/science.aau2422), the other using 40Ar/39Ar dating of plagioclase feldspars (Sprain, C.G. et al. 2019. The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary. Science, v. 363, p. 866-870; DOI: 10.1126/science.aav1446). Both studies were initiated for the same reason: previous dating of the sequence of flows in the Deccan Traps was limited by inadequate sampling of the flow sequence and/or high analytical uncertainties. All that could be said with confidence was that the outpouring of more than a million cubic kilometres of plume-related basaltic magma lasted around a million years (65.5 to 66.5 Ma) that encompassed the sudden extinction event and the possibly implicated Chicxulub impact. The age of the impact, as recorded by its iridium-rich ejecta found in sediments of the Denver Basin in Colorado, has been estimated from zircon U-Pb data at 66.016 ± 0.050 Ma; i.e. with a precision of around 50 thousand years.

407458aa.2

The Deccan Traps in the Western Ghats of India (Credit: Wikipedia)

Because basalts rarely contain sufficient zircons to estimate a U-Pb age of their eruption, Blair Schoene and colleagues collected them from palaeosols or boles that commonly occur between flows and sometimes incorporate volcanic ash. Their data cover 23 boles and a single zircon-bearing basalt. Sprain et al. obtained 40Ar/39Ar ages from 19 flows, which they used to supplement 5 ages obtained by their team in previous studies that used the same analytical methods and 4 palaeosol ages from an earlier paper by Schoene’s group.

The zircon U-Pb data from palaeosols, combined with estimates of magma volumes that contributed to the lava sequence between each dated stratigraphic level, provide a record of the varying rates at which lavas accumulated. The results suggest four distinct periods of high-volume eruption separated by long. periods of relative quiescence. The second such pulse precedes the K-Pg event by up to 100 ka, the extinction and impact occurring in a period of quiescence. A few tens of thousand years after the event Deccan magmatism rose to its maximum intensity. Schoene’s group consider that this supports the notion that both magmatism and bolide impact drove environmental deterioration that culminated in mass extinction.

The Ar-Ar data derived from the basalt flows themselves, seem to tell a significantly different story. A plot of basalt accumulation, similarly derived from dating and stratigraphy, shows little if any sign of major magmatic pulses and periods of quiescence. Instead, Courtney Sprain’s team distinguish an average eruption rate of around 0.4 km3 per year before the K-Pg event and 0.6 km3 per year following it. Yet they observe from climate proxy data that there seems to have been only minor climatic change (about 2 to 3 °C warming) during the period around and after the K-Pg event when some 75% of the lavas flooded out. Yet during the pre-extinction period of slower effusion global temperature rose by 4°C then fell back to pre-eruption levels immediately before the K-Pg event. This odd mismatch between magma production and climate, based on their data, prompts Sprain et al. to speculate on possible shifts in the emission of climate-changing gases during the period Deccan volcanism: warming by carbon dioxide – either from the magma or older carbon-rich sediments heated by it; cooling induced by stratospheric sulfate aerosols formed by volcanogenic SO2 emissions. That would imply a complex scenario of changes in the composition of gas emissions of either type. They suggest that one conceivable trigger for the post-extinction climate shift may have been exhaustion of the magma source’s sulfur-rich volatile content before the Chicxulub impact added enough energy to the Earth system to generate the massive extrusions that followed it. But their view peters out in a demand for ‘better understanding of [the Deccan Traps’] volatile release’.

A curious case of empiricism seeming to resolve the K-Pg conundrum, on the one hand, yet pushing the resolution further off, on the other …

More discussion on the K-Pg event can be read here

Plants first to succumb to the end-Permian event

We have become accustomed to thinking that up to 90% of organisms were snuffed out by the catastrophe at the Permian-Triassic boundary 252 Ma ago. Those are the figures for marine organisms, whose record in sediments is the most complete. It has also been estimated to have lasted a mere 60 ka, and the recovery in the Early Triassic to have taken as long as 10 Ma. There are hints of three separate pulses of extinction related to: initial gas emission from the Siberian Traps; coal fires; and release of methane from sea-floor gas hydrates at the peak of global warming. Various terrestrial sequences record the collapse of dense woodlands, so that the Early Triassic is devoid of coals that are widespread in the preceding Late Permian. A new detailed study of terrestrial sediments in the Sydney Basin of eastern Australia reveals something new (Fielding, C.R. and 10 others 2019. Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nature Communications, v. 10, online publications: DOI: 10.1038/s41467-018-07934-z).

407458aa.2

The distinctive, tongue-like form of Glossopteris leaves that dominate the coal-bearing Permian strata of the southern coninents. Their occurrence in South America, Africa, India, Australia, New Zealand, and Antarctica prompted Alfred Wegener to suggest that these modern continents had been united in Pangaea by Permian times: a key to continental drift. (Credit: Getty Images)

Christopher Fielding or the University of Nebraska-Lincoln and colleagues focused on pollens, geochemistry and detailed dating of the sedimentary succession across the P-Tr boundary exposed on the New South Wales coast. The stratigraphy is intricately documented by a 1 km deep well core that penetrates a more or less unbroken fluviatile and deltaic sequence that contains eleven beds of volcanic ash. The igneous layers are key to calibrating age throughout the sequence (259.10 ± 0.17 to 247.87 ± 0.11 Ma using zircon U-Pb methods). The pollens change abruptly from those of a Permian flora, dominated by tongue-like glossopterid plants, to a different association that includes conifers. The change coincides with a geochemical ‘spike’ in the abundance of nickel and a brief change in the degree of alteration of detrital fledspars to clay minerals. The first implicates the delivery of massive amounts of nickel to the atmosphere, probably by the eruption of the Siberian Traps , which contain major economic nickel deposits. The second feature suggests a brief period of warmer and more humid climatic conditions. A third geochemical change is the onset of oscillations in the abundance of 13C that are thought to record major changes in plant life across the planet. These features would have been an easily predicted association with the 252 Ma mass extinction were it not for the fact that the radiometric dating places them about 400 thousand years before the well-known changes in global animal life. Detailed dating of the Siberian Traps links the collapse of Glossopteris and coal formation to the earliest extrusion of flood basalts, which suggests that the animal extinctions were driven by cumulative effects of the later outpourings

Related article: Chris Fielding comments on the paper at Nature Research/Ecology and Evolution

Something large moved 2 billion years ago

More than 50 years ago a group of schoolchildren discovered a fronded fossil (Charnia) in the Precambrian rocks of Charnwood Forest in the English Midlands. Since then it has been clear that multicellular life originated before the Cambrian Period, when the first tangible life had previously been considered to have emerged. Discovery of the rich Ediacaran fauna of quilted, baglike and disc-like animals in 635 Ma old Neoproterozoic sediments in South Australia, and many other occurrences re-established the start of the ‘carnival of animals’ in the Ediacaran Period (635 to 541 Ma). It happened to follow the climatic and environmental turmoil of at least two Snowball Earth episodes during the preceding Cryogenian Period (850 to 635 Ma), which has led to a flurry of suggestions for the transition from protozoan to metazoan life. Yet, applying a ‘molecular-clock’ approach to the genetic differences between living metazoan organisms seems to suggest a considerable earlier evolutionary event that started ‘life as we know it’. That may have been confirmed by a discovery in much older sediments in Gabon, West Africa.

A sequence of shallow-marine sediments in the Francevillian Series in Gabon was laid down at a time of fluctuating sea level around 2100 Ma ago, when the upper oceans had become oxygenated. In them are black shales that preserve an abundance of intricate sedimentary features. Among them are curious stringy structures rich in crystalline pyrite (Fe2S). They are infilled wiggly tubes that lie in the shale bedding. CT scans reveal that the bedding has been flattened around the tubules as it became lithified. So the tubes formed while the sediment was wet and soft (El Albani, A. and 22 others 2019. Organism motility in an oxygenated shallow-marine environment 2.1 billion years ago. Proceedings of the National Academy of Sciences, online preprint; DOI: 10.1073/pnas.1815721116). They look very like burrows. Up to 5 mm across, they can be considered large by comparison with almost all organisms known from that time. The exception comes from the same stratigraphic Series in Gabon. In 2010, El Albani and colleagues published an account of fossils preserved by pyrite that look like fried eggs, 1 to 2 cm across, with scalloped edges. Internal structures revealed by CT scanning include radial slits in the ‘whites’ and folding within the central ‘yolk’. That paper reported the geochemical presence in the host shales of steranes, which are breakdown products of steroids that are unique to eukaryotes. Could these organisms and the wiggly tube-like trace fossils indicate the presence of the earliest metazoans in the Francevillian Series?

407458aa.2

Palaeoproterozoic fossils from the Francevillian Series in Gabon. Top: greytone photographs of burrow-like trace fossils (Credit: El Albani et al. 2019; Fig.1). Bottom: colour photograph and 3 CT scans of discoidal fossil (Credit: El Albani et al. 2010; Fig. 4).

Until the discoveries in Gabon, the oldest organic structure that had been suggested to be a metazoan was the rare Grypania, a spiral, strap-like fossil found in a variety of strata ranging in age from 1870 to 650 Ma. Being made of a structureless ribbon of graphite, Grypania seems most likely to have been made by colonial bacteria. The two Gabon life forms cannot be disposed of quite so easily. The discoids have organised structures rivalling those in Ediacaran animals, while the wiggly tubes clearly seem to indicate something capable of movement. In both cases preservation is by iron sulfide, which suggests the presence at some stage of chemo-autotrophic bacteria that reduce sulfate ions to sulfide. Could these not have formed mats taking up irregular discs and plates? The burrows may have been formed by unicellular eukaryotes, one type of which – the slime moulds – is capable of aggregating together to form multi-celled reproductive structures as well as living freely as single amoeba. Some form slug-like masses that are capable of movement; not metazoans, but perhaps their precursors.

A stratigraphic timeline for the Denisova Cave

Denisova Cave was named to commemorate an 18th century hermit called Denis, who used it as his refuge. The culmination of more than four decades of excavation, which followed the discovery there of Mousterian and Levallois tools there, has been the explosion onto the palaeoanthropological scene of Denisovan genomics, beginning in 2010 with sequenced DNA from a child’s finger bone. The same layer yielded Neanderthal DNA from a toe bone in 2013. Another layer yielded similar evidence in 2018 of an individual who had a Neanderthal father and a Denisovan mother. Application of the new technique of peptide mass fingerprinting, or zooarchaeology by mass spectrometry (ZooMS), to small, unidentifiable bone fragments from the cave sediments revealed further signs of Denisovan occupation and the first trace of anatomically modern humans (AMH). So far the tally is 4 Denisovans (two female children and two adult males), a Neanderthal woman and the astonishing hybrid. Analyses of the sediments themselves showed traces of both Neanderthal and Denisovan mtDNA from deeper in the stratigraphy than levels in which human fossils had been found, but which contained artefacts. The discovery of the first Denisovan DNA revealed that AMH migrants from Africa who reached the West Pacific islands about 65 ka ago carried fragments of that genome. As well as hybridising with Neanderthals some of the people who left Africa had interbred with Denisovans sufficiently often for genetic traces to have survived. Yet, until now, the ages of the analysed samples from the cave remained unknown.

That is no surprise for two reasons: cave sediments are complex, having been reworked over millennia to scramble their true stratigraphy; most of the organic remains defied 14C dating, being older than its maximum limit of determination. However, using alternative approaches has resulted in two papers in the latest issue of Nature. The first reports results from two methods that rely on the luminescence of grains of quartz and feldspar when stimulated, which measures the time since they were last exposed to light (Jacobs, Z. and 10 others 2019. Timing of archaic hominin occupation of Denisova Cave in southern Siberia. Nature, v. 565, p. 594-599; DOI: 0.1038/s41586-018-0843-2). Over 280 thousand grains in 103 sediment samples from different depths and various parts of the cave system have yielded a range of ages from 300 to 20 ka that span 3 glacial-interglacial cycles except for a few gaps, giving rough estimates of the timing of hominin occupation shown by fossils and soil layers that contain DNA. The youngest evidence for Denisovans is shown to be roughly 50 ka; a time when AMH was present elsewhere in Siberia. They lived at a time halfway between the 130 ka interglacial and the last glacial maximum. Two Neanderthals, a Denisovan and the hybrid occupied the site during the 130 ka interglacial. Soils from the previous warm episode from 250 to 200 ka contain both Neanderthal and Denisovan DNA traces. The oldest occupancy, marked by the presence of a Denisovan bone sample, was 300 ka ago, once again midway between an interglacial and a glacial maximum.

407458aa.2

All the hominin remains found in Denisova Cave: Note the common scale. (Credit: Douka et al. 2019; extended data Figure 1)

The second paper (Douka, K. and 21 others 2019. Age estimates for hominin fossils and the onset of the Upper Palaeolithic at Denisova Cave. Nature, v. 565, p. 640–644; DOI: 10.1038/s41586-018-0870-z) focused on direct dating of the hominin fossils themselves – and thus their DNA content, important in trying to piece together timings of genetic mixing. In the absence of radiocarbon dates from the bones themselves because of most specimens’ >50 ka ages, except in the case of the youngest whose 14C age is at the 50 ka limit. They resorted to a hybrid technique based on a means of modelling fossils’ ages from differences in mtDNA between the specimens and that in the youngest hominin, which, luckily, was dateable by radiocarbon means. Weighted by dating of the actual sediments that contain them, the differences should become greater for successively older fossils because of random mutations: a variant of the ‘molecular clock’ approach. It’s complicated and depends on assuming that mitochondrial mutation rate was the same as that in modern humans. Unsurprisingly the results are imprecise, but sufficient to match the hominin fossil occurrences with different environmental conditions

Pollen grains and vertebrate fossils from various levels in the cave system demonstrate the wide climatic and ecological conditions in which the various hominins lived. The warmest episodes supported broad-leafed forest, offering maximum resources for hominin survival. Those between interglacial and full glacial conditions were much less benign, with alternating dry and wet cold conditions that supported open steppe ecosystems. The oldest Denisovan occupation was at the close of a period of moderately warm and humid conditions that supported mixed conifer and broad-leafed trees that gave way to reduced tree cover.

As well as the presence of stone tools sporadically through the sedimentary sequence, in the youngest levels there are bone rings and pendants made from deer teeth; clearly ornamental items.  Did the late Denisovans make them or do they signify anatomically modern human activity? Radiocarbon ages do not give a concrete answer, one of the pendants is about 45 ka old with an error that puts it just within the range of age variation of the oldest Denisovan fossil. No AMH remains have been found in Denisova Cave, but remains of a modern human male have been found at Ust’-Ishim, in NW Siberia. At 45 ka, he represents the earliest arrival of AMH in northern Asia. So it may have been members of this new population that left ornaments in Denisova, but, for the moment, artistic Denisovans are a possibility.

Further deployment of rapid screening for hominin bone fragments using the ZooMS method and analyses for traces of DNA in soils is likely to expand the geographic and time ranges of Denisovans and other close human relatives. Denisova Cave formed in Silurian limestones of the Altai Range, and there are other caves in those hills …

Related article: Dennel, R. 2019. Dating of hominin discoveries at Denisova. Nature, v. 565, p. 571-572; DOI: 10.1038/d41586-019-00264-0)