Early stone tools spread more widely

The rift systems of Ethiopia, Kenya and Tanzania, and the limestone caverns near Johannesburg, South Africa have a long history of intensive archaeological study, rewarded by many finds of hominin skeletal remains and artifacts over the last century. Each region lays claim to be the birthplace of humans, that in South Africa being grandiloquently dubbed ‘The Cradle of Humankind’. Of course, the realistic chances of making discoveries and careers draws scientists and funds back to these regions again and again: a kind of self-fulfilling prophesy fueled by the old miners’ adage, ‘to find elephants you must go to elephant country’. The key site for the earliest stone tools was for a long time Tanzania’s Olduvai Gorge, thanks to finds of deliberately shaped choppers, hammer stones and sharp edges from about 2 Ma ago in close association with remains of Homo habilis by the Leakeys. Termed ‘Oldowan’, signs of this industry emerged from 2.6 Ma sediments in the Afar Depression of Ethiopia in 2010, but with no sign of who had made them. By 2015 the cachet of ‘first tools’ moved to Lomekwi on the shore of Lake Turkana in Kenya, dated to 3.3 Ma but again with no evidence for a maker. In fact the oldest evidence for the use of tools emerged with the 2010controversial discovery at Dikika in Afar of 3.4 Ma old bones that carry cut marks, but no sign of tools nor whoever had used them. However remains of Australopithecus afarensis occur only a few kilometers away.

Excavations outside the East African Rift System and South Africa are still few and far between, especially from before 1 Ma. The High Plateaus of eastern Algeria include one ancient site, near Ain Hanech, which yielded 1.8 Ma Oldowan stone artifacts as long ago as 1992. A nearby site at Ain Boucherit takes the North African record back to 2.4 Ma with both Oldowan tools and cut-marked bones of horse and antelope (Sahnouni, M. and 12 others 2018. 1.9-million- and 2.4-million-year-old artifacts and stone tool–cutmarked bones of from Ain Boucherit, Algeria. Science, v. 362, p. 1297-1301; DOI: 10.1126/science.aau0008). Tool makers had clearly diffused across what is now the Sahara Desert by that time. Given the distance between the Lomekwi and Dikika sites in East Africa that is hardly a surprise, provided climatic conditions were favourable. Michel Brunet’s discovery in 3.3 Ma old sediments of an australopithecine (Au. bahrelghazali) in central Chad demonstrates that early hominins were quite capable of spreading across the African continent. Yet, to wean palaeoanthropologists and their sponsors from hitherto fruitful, ‘elephant’ areas to a more ‘blue skies’ approach is likely to be difficult. There are plenty of sedimentary basins in Africa that preserve Miocene to Recent sediments that may yet turn up fossils and artifacts that take the science of human origins and peregrinations further and possibly in unexpected taxonomic directions

Related article: Gibbons, A. 2018. Strongest evidence of early humans butchering animals discovered in North Africa. Science News online; doi:10.1126/science.aaw2245.

Pterosaurs had feathers and fur

Pterosaurs, which include the pterodactyls and pteranodons, were the first vertebrates to achieve proper, flapping flight. In the popular imagination they are regarded as ‘flying dinosaurs’, whereas the anatomy of the two groups is significantly different. The first of them appeared in the Upper Triassic around 235 Ma ago, at roughly the same time as the earliest known dinosaurs. The anatomical differences make it difficult to decide on a common ancestry for the two. But detailed analysis of pterosaur anatomy suggests that they share enough features with dinosaurs, crocodiles and birds for all four groups to have descended from ancestral archosaurs that were living in the early Triassic, and they survived the mass extinction at the end of that Period. Birds, on the other hand, first appear in the fossil record during the Upper Jurassic 70 Ma later than pterosaurs. They are now widely regarded as descendants of early theropod dinosaurs, which are known commonly to have had fur and feathers.

Pterosaurs leapt into the public imagination in the final chapter of Sir Arthur Conan Doyle’s Lost World with a clatter of ‘dry, leathery wings’ as Professor George Challenger’s captive pterodactyl from northern Brazil’s isolated Roraima tepui plateau made its successful bid for escape from a Zoological Institute meeting in Queens Hall. Yet, far from being leathery, pterosaurs turned out, in the late 1990’s, to have carried filamentous pycnofibres akin to mammalian hair. Widespread reports in the world press during the week before Christmas in 2018 hailed a further development that may have rescued pterosaurs from Conan Doyle’s 1912 description before it sprang from its perch:

It was malicious, horrible, with two small red eyes as bright as points of burning coal. Its long, savage mouth, which it held half-open, was full of a double row of sharp-like teeth. Its shoulders were humped, and round them was draped what appeared to be a faded grey shawl. It was the devil of our childhood in person.

Two specimens from the Middle to Upper Jurassic Yanliiao lagerstätte in China show far more (Yang, Z. and 8 others 2018. Pterosaur integumentary structures with complex feather-like branching. Nature Ecology & Evolution, v. 3, p. 24-30; DOI: 10.1038/s41559-018-0728-7). Their pycnofibres show branching tufts, similar to those found in some theropods dinosaurs, including tyrannosaurs. They also resemble mammalian underfur fibres, whose air-trapping properties provide efficient thermal insulation. Both body and wings of these pterosaurs are furry, which the authors suggest may also have helped reduce drag during flight, while those around the mouth may have had a sensory function similar to those carried by some living birds. Moreover, some of the filaments contain black and red pigments.


Artist’s impression of a Jurassic anurognathid pterosaur from China (Credit: Yang et al 2018; Fig. 4)

Pterosaurs may have independently developed fur and feathers; a case of parallel evolution in response to similar evolutionary pressures facing dinosaurs, birds and mammals. Alternatively, they may have had a deep evolutionary origin in the common ancestors of all these animal groups as far back as the Upper Carboniferous and Lower Permian.

Related articles: Nature Editorial 2018. Fur and fossils. Nature, v. 564, p. 301-302; DOI: 10.1038/d41586-018-07800-4; King, A. 2018. Pterosaurs sported feathers, claim scientists (The Scientist); Conniff, R. 2018. Pterosaurs just keep getting weirder (Scientific American); New discovery pushes origin of feathers back by 70 million years (Science Daily)

Calibrating 14C dating

Radiocarbon dating is the most popular tool for assessing the ages of archaeological remains and producing climatic time series, as in lake- and sea-floor cores, provided that organic material can be recovered. Its precision has steadily improved, especially with the development of accelerator mass spectrometry, although it is still limited to the last 50 thousand years or so because of the short half-life of 14C (about 5,730 years,). The problem with dating based on radioactive 14C is its accuracy; i.e. does it always give a true date. This stems from the way in which 14C is produced – by cosmic rays interacting with nitrogen in the atmosphere. Cosmic irradiation varies with time and, consequently, so does the proportion of 14C in the atmosphere. It is the isotope’s proportion in atmospheric CO2 gas at any one time in the past, which is converted by photosynthesis to dateable organic materials, that determines the proportion remaining in a sample after decay through the time since the organism died and became fossilised. Various approaches have been used to allow for variations in 14C production, such as calibration to the time preserved in ancient timber by tree rings which can be independently radiocarbon dated. But that depends on timber from many different species of tree from different climatic zones, and that is affected by fractionation between the various isotopes of carbon in CO2, which varies between species of plant. But there is a better means of calibration.

The carbonate speleothem that forms stalactites and stalagmites by steady precipitation from rainwater, sometimes to produce visible layering, not only locks in 14C dissolved from the atmosphere by rainwater but also environmental radioactive isotopes of uranium and thorium. So, layers in speleothem may be dated by both methods for the period of time over which a stalagmite, for instance, has grown. This seems an ideal means of calibration, although there are snags; one being that the proportion of carbon in carbonates is dominated by that from ancient limestone that has been dissolved by slightly acid rainwater, which dilutes the amount of 14C in samples with so called ‘dead carbon’. Stalagmites in the Hulu Cave near Nanjing in China have particularly low dead-carbon fractions and have been used for the best calibrations so far, going back the current limit for radiocarbon dating of 54 ka (Cheng, H. and 14 others 2018. Atmospheric 14C/12C during the last glacial period from Hulku Cave. Science, v. 362, p. 1293-1297; DOI: 10.1126/science.aau0747). Precision steadily falls off with age because of the progressive reduction to very low amounts of 14C in the samples. Nevertheless, this study resolves fine detail not only of cosmic ray variation, but also of pulses of carbon dioxide release from the oceans which would also affect the availability of 14C for incorporation in organic materials because deep ocean water contains ‘old’ CO2.

The earliest humans in Tibet

Modern Tibetans thrive in the rarefied air at altitudes above 4 km partly because they benefit from a genetic mutation of the gene EPAS1, which regulates haemoglobin production. Surprisingly, the segment of Tibetan’s DNA that contains the mutation matches that present in the genome of an undated Denisovan girl’s finger bone found in the eponymous Siberian cave. The geneticists who made this discovery were able to estimate that Tibetans inherited the entire segment sometime in the last 40 thousand years through interbreeding with Denisovans, who probably were able to live at high altitude too. Wherever and whenever this took place the inheritance was retained because it clearly helped those who carried it to thrive in Tibet. The same segment is present in a few percent of living Han Chinese people, which suggests their ancestors and those of the Tibetans were members of the same group some 40 ka ago, most of the Han having lost the mutation subsequently.

That inheritance would have remained somewhat mysterious while the existing evidence for the colonisation of the Tibetan Plateau suggested sometime in the Holocene, possibly by migrating early farmers. A single archaeological site at 4600 m on the Plateau has changed all that (Zhang, X.L. and 15 others 2018. The earliest human occupation of the high-altitude Tibetan Plateau 40 thousand to 30 thousand years ago. Science, v.  362, p. 1049-1051; DOI: 10.1126/science.aat8824). The dig at Nwya Devu, which lies 250 km NW of Lhasa, has yielded a sequence of sediments (dated by optically stimulated luminescence at between 45 to 18 thousand years) that contains abundant stone tools made from locally occurring slate. The oldest coincides roughly with the age of the earliest anatomically modern human migrants into northern China, so the earliest Tibetans may well have been a branch of that same group of people, as suggested by the DNA of modern Tibetan and Han people. However, skeletal remains of both humans and their prey animals are yet to emerge from Nwya Devu, which leaves open the question of who they were. Anatomically modern humans or archaic humans, such as Denisovans?

The tools do not help to identify their likely makers. Slate is easy to work and typically yields flat blades with sharp, albeit not especially durable, edges; they are disposable perhaps explaining why so many were found at Nwya Devu. None show signs of pressure flaking that typify tools made from harder, more isotropic rock, such as flint. Yet they include a variety of use-types: scrapers; awls; burins and choppers as well as blades. The lack of associated remains of prey or hearths is suggested by the authors to signify that the site was a workshop; perhaps that will change with further excavation in the area. The age range suggests regular, if not permanent, occupancy for more than 20 ka

Related articles: Gibbons, A. 2014. Tibetans inherited high-altitude gene from ancient human. Science News,2 July 2014, Zhang J-F. & Dennell, R. 2018. The last of Asia conquered by Homo sapiens. Science, v. 362, p. 992-993; DOI: 10.1126/science.aav6863.

Volcanism and the Justinian Plague

Between 541 and 543 CE, during the reign of the Roman Emperor Justinian, bubonic plague spread through countries bordering the Mediterranean Sea. This was a decade after Justinian’s forces had had begun to restore the Roman Empire’s lost territory in North Africa, Spain, Italy and the present-day Balkans by expeditions out of Byzantium (the Eastern Empire). At its height, the Plague of Justinian, was killing 5000 people each day in Constantinople, eventually to consume 20 to 40% of its population and between 25 to 50 million people across the empire. Like the European Black Death of the middle 14th century. The bacterium Yersinia pestis originated in Central Asia and is carried in the gut of fleas that live on rats. The ‘traditional’ explanation of both plagues was that plague spread westwards along the Silk Road and then with black rats that infested ship-borne grain cargoes. Plausible as that might seem, Yersinia pestis, fleas and rats have always existed and remain present to this day. Trade along the same routes continued unbroken for more than two millennia. Although plagues with the same agents recurred regularly, only the Plague of Justinian and the Black Death resulted in tens of million deaths over short periods. Some other factor seems likely to have boosted fatalities to such levels.


Monk administering the last rites to victims of the Plague of Justinian

Five years before plague struck the Byzantine historian Procopius recorded a long period of fog and haze that continually reduced sunlight; typical features of volcanic aerosol veils. Following this was the coldest decade in the past 2300 years, as recorded by tree-ring studies. It coincides with documentary evidence of famine in China, Ireland, the Middle East and Scandinavia.. A 72 m long ice core extracted from the Colle Gnifetti glacier in the Swiss Alps in 2013 records the last two millennia of local climatic change and global atmospheric dust levels. Sampled by laser slicing, the core has yielded a time series of data at a resolution of months or better. In 536 an Icelandic volcano emitted ash and probably sulfur dioxide over 18 months during which summer temperature fell by about 2°C. A second eruption followed in 540 to 541. ‘Volcanic winter’ conditions lasted from 536 to 545, amplifying the evidence from tree-ring data from the 1990’s.

The Plague of Justinian coincided with the second ‘volcanic winter’ after several years of regional famine. This scenario is paralleled by the better documented Great Famine of 1315-17 that ended the two centuries of economic prosperity during the 11th to 13th centuries. The period was marked by extreme levels of crime, disease, mass death, and even cannibalism and infanticide. In a population weakened through malnutrition to an extent that we can barely imagine in modern Europe, any pandemic disease would have resulted in the most affected dying in millions. Another parallel with the Plague of Justinian is that it followed the ending of four centuries of the Medieval Warm Period, during which vast quantities of land were successfully brought under the plough and the European population had tripled. That ended with a succession of major, sulfur-rich volcanic eruption in Indonesia at the end of the 13th century that heralded the Little Ice Age. Although geologists generally concern themselves with the social and economic consequences of a volcano’s lava and ash in its immediate vicinity– the ‘Pompeii view’ – its potential for global catastrophe is far greater in the case of really large (and often remote) events.

Chemical data from the same ice core reveals the broad economic consequences of the mid-sixth century plague. Lead concentrations in the ice, deposited as airborne pollution from smelting of lead sulfide ore to obtain silver bullion, fell and remained at low levels for a century. The recovery of silver production for coinage is marked by a spike in glacial lead concentration in 640; another parallel with the Black Death, which was followed by a collapse in silver production, albeit only for 4 to 5 years.

Related article: Gibbons, A. 2018. Why 536 was ‘the worst year to be alive’. Science, v. 362,p. 733-734; DOI:10.1126/science.aaw0632

Subglacial impact structure: trigger for Younger Dryas?

Radar microwaves are able to penetrate easily through several kilometres of ice. Using the arrival times of radar pulses reflected by the bedrock at glacial floor allows ice depth to be computed. When deployed along a network of flight lines during aerial surveys the radar returns of large areas can be converted to a grid of cells thereby producing an image of depth: the inverse of a digital elevation model. This is the only means of precisely mapping the thickness variations of an icecap, such as those that blanket Antarctica and Greenland. The topography of the subglacial surface gives an idea of how ice moves, the paths taken by liquid water at its base, and whether or not global warming may result in ice surges in parts of the icecap. The data can also reveal topographic and geological features hidden by the ice (see The Grand Greenland Canyon September 2013).


Colour-coded subglacial topography from radar sounding over the Hiawatha Glacier of NW Greenland (Credit: Kjaer et al. 2018; Fig. 1D)

Such a survey over the Hiawatha Glacier of NW Greenland has showed up something most peculiar (Kjaer, K.H. and 21 others 2018. A large impact crater beneath Hiawatha Glacier in northwest Greenland. Science Advances, v. 4, eaar8173; DOI: 10.1126/sciadv.aar8173). Part of the ice margin is an arc, which suggests the local bed topography takes the form of a 31km wide, circular depression. The exposed geology shows no sign of a structural control for such a basin, and is complex metamorphic basement of Palaeoproterozoic age. Measurements of ice-flow speeds are also anomalous, with an array of higher speeds suggesting accelerated flow across the depression. The radar image data confirm the presence of a subglacial basin, but one with an elevated rim and a central series of small peaks. These are characteristic of an impact structure that has only been eroded slightly; i.e. a fairly recent one and one of the twenty-five largest impact craters on Earth.. Detailed analysis of raw radar data in the form of profiles through the ice reveals  that the upper part is finely layered and undisturbed. The layering continues into the ice surrounding the basin and is probably of Holocene age (<11.7 ka), based on dating of ice in cores through the surrounding icecap. The lower third is structurally complex and shows evidence for rocky debris. Sediment deposited by subglacial streams where they emerge along the arcuate rim contain grains of shocked quartz and glass, as well as expected minerals from the crystalline basement rocks. Some of the shocked material contains unusually high concentrations of transition-group metals, platinum-group elements and gold; further evidence for impact of extraterrestrial material – probably an iron asteroid that was originally more than 1 km in diameter. The famous Cape York iron meteorite, which weighs 31 t – worked by local Innuit to forge harpoon blades – fell in NW Greenland about 200 km away.

The central issue is not that Hiawatha Glacier conceals a large impact crater, but its age. It certainly predates the start of the Holocene and is no older than the start of Greenland glaciation about 2.6 Ma ago. That only Holocene ice layers are preserved above the disrupted ice that rests immediately on top of the crater raises once again the much-disputed possibility of an asteroid impact having triggered the Younger Dryas cooling event and associated extinctions of large mammals in North America at about 12.9 ka (see Impact cause for Younger Dryas draws flak May 2008). Only radiometric dating of the glassy material found in the glaciofluvial sediments will be able to resolve that particular controversy.

Oceanic hydrothermal vents and the origin of life

A range of indirect evidence has been used to suggest that life originated deep in the oceans around hydrothermal vents, such as signs of early organic matter in association with Archaean pillow lavas. One particularly persuasive observation is that a number of proteins and other cell chemicals are constructed around metal sulfide groups. Such sulfides are common around hydrothermal ‘smokers’ associated with oceanic rift systems. Moreover, Fischer-Tropsch reactions between carbon monoxide and hydrogen produce quite complex hydrocarbon molecules under laboratory conditions. Such hydrogenation of a carbon-bearing gas requires a catalyst, a commonly used one being chromium oxide (see Abiotic formation of hydrocarbons by oceanic hydrothermal circulation May 2004). It also turns out that fluids emitted by sea-floor hydrothermal systems are sometimes rich in free hydrogen, formed by the breakdown of olivine in ultramafic rocks to form hydroxylated minerals such as serpentine and talc. The fact that chromium is abundant in ultramafic rocks, in the form of its oxide chromite, elevates the possibility that Fischer-Tropsch reactions may have been a crucial part of the life-forming process on the early Earth. What is needed is evidence that such reactions do occur in natural settings.


A white carbonate mound forming at the Lost City hydrothermal vent field on the Mid-Atlantic Ridge (Credit: Baross 2018)

One site on the mid-Atlantic ridge spreading centre, the Lost City vent field, operates because of serpentinisation of peridotites exposed on the ocean floor, to form carbonate-rich plumes and rocky towers; ‘white smokers’. So that is an obvious place to test the abiotic theory for the origin of life. Past analyses of the vents have yielded a whole range of organic molecules, including alkanes, formates, acetates and pyruvates, that are possible precursors for such a natural process. Revisiting Lost City with advanced analytical techniques has taken the quest a major step forward (Ménez, B. et al. 2018. Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere. Nature, advance online publication; DOI: 10.1038/s41586-018-0684-z). The researchers from France and Kazakhstan focused on rock drilled from 170 m below the vent system, probably beyond the influence of surface contamination from living organisms. Using several methods they detected the nitrogen-containing amino acid tryptophan, and that alone. Had they detected other amino acids their exciting result would have been severely tempered by the possibility of surface organic contamination. The formation of tryptophan implies that its abiotic formation had to involve the reduction of elemental nitrogen (N2) to ammonia (NH3). Bénédicte Ménez and colleagues suggest that the iron-rich clay saponite, which is a common product of serpentine alteration at low temperatures, may have catalysed such reduction and amino-acid synthesis through Friedel–Crafts reactions. Fascinating as this discovery may be, it is just a step towards confirming life’s abiogenesis. It also permits speculation that similar evidence may be found elsewhere in the Solar System on rocky bodies, such as the moons Enceladus and Europa that orbit Saturn and Jupiter respectively. That is, if the rock base of hydrothermal systems thought to occur there can be reached.

Related article: Baross, J.A. 2018. The rocky road to biomolecules. Nature, v. 564, p. 42-43; DOI: 10.1038/d41586-018-07262-8.

The risk of landslides in Africa

The most widespread risk from natural hazards is, with little doubt, that posed by ground instability; landslides and landslips; mudflows; rock avalanches and a range of other categories in which large volumes of surface material are set in motion. They can be triggered by earthquakes, volcanism or heavy rainfall that changes the physical properties of rock and soil. Not only steep slopes pose a risk, for some affect ground with quite gentle topography, as witness the terrible scenes from Sulawesi triggered by the 28 September 2018 magnitude 7.5 earthquake beneath the Minhasa Peninsula. This set in motion mudflows on gently sloping ground when the seismic waves caused liquefaction of unconsolidated sediments that not only shattered dwellings by the lateral motion, but whole communities sank into the slurry with little trace. The rapid events left a death toll confirmed at 2010 people with about 5000 missing, feared to have been swallowed by the earth. In the last 9 months mass movement has resulted in fatalities in many places, the most publicised being in Uganda, Japan, Philippines, Sulawesi, Ethiopia, Sumatra, South India, Bangladesh, California, Nepal, and the list grows as it does every year.


Types of mass movement (Credit: US Geological Survey

As well as purely natural causes, human activities, such as deforestation, excavations and dumping of materials, greatly exacerbate risks. The South Wales former coal-mining communities commemorate every year the collapse of a mine spoil heap on a steep hillside on 21 October 1966 that engulfed a primary school at Aberfan, killing 116 small children and 28 adults. Wherever they occur, there seems to be little chance of escape for those in their path. Slowly it has become possible for geoscientists to outline areas that are potentially at risk from catastrophic mass wastage, sometimes from the distribution of scars of previous events on remotely sensed images, but increasingly by multivariate analysis of landscapes in terms of the factors that may contribute to future ground failures. The principal ones are: topographic slope and relief; annual rainfall, especially the likely precipitation in a single day; vegetation cover, particularly by trees; strength of surface rock and soils, including degrees of consolidation, interbedding and water content; geological structure, such as the trajectory of faults, degree of  jointing and the dip of strata. Modelling risk has to grapple with the global scale of the problem, which cannot be addressed in the least developed regions by piecemeal local studies, although those are urgent, of course, in areas with recorded instances of catastrophic ground failure. Regional studies can screen vast areas of probably low risk so that meagre resources can focus on those that appear to be most dangerous to populated places.

afr landslide

Degree of risk from landslides of all types in the northern part of the East African Rift System (Credit: Broeckx et al. 2018; Fig. 6)

Belgian engineering geologists and GIS specialists have assembled a monumental risk assessment of Africa, together with a bibliography of all published work on mass movement across the continent (Broeckx, J. et al. 2018. A data-based landslide susceptibility map of Africa. Earth-Science Reviews, v. 185, p. 102-121; DOI: 10.1016/j.earscirev.2018.05.002). They point out that Google Earth’s 3-D viewing potential at fine spatial resolution provides a free and rapid means of mapping scars of previous earth movements in considerable detail over areas that data analysis suggests to be susceptible. Their paper provides continent-scale maps of the parameters that they used as well as maps showing several versions of their risk analysis. The supplementary data to the paper include downloadable, full-resolution maps of landslide susceptibility.

German global DEM now freely available


TerraSAR-X and Tandem-X satellites fly close to each other some 500km above the Earth

In  2007 and 2010 two radar-imaging satellites were launched by the German space agency DLR, TerraSAR-X and Tandem-X respectively. After 2010 both orbited in close, side-by-side formation, sometimes as little as 200 m apart. With one acting as a both a transmitter and receiver of microwave pulses, the other as a receiver, this set up allowed the two signals returning from the Earth’s surface to be matched. The slightly different positions of the platforms results in a time difference at which a pulse reflected from a point on the Earth’s surface reaches the two receiving antennas. This difference varies according to the topographic elevation of the point – in effect analogous to the parallax shift captured in conventional stereoscopic images but measured by the interference between the two signals. Although involving far more complex computation, such radar interferometry produces estimates of each point’s elevation and ultimately a 3-dimensional image of the Earth’s surface. After a period of commercial operation, DLR has decided to make part of the data available free of charge. Both systems use microwaves with a wavelength of around 3 cm (9.65 GHz frequency), which allows topographic elevation to be measured to a precision of ±1 m. Using orbits that cross the poles, each at an angle to the Equator, allows swaths from the dual system eventually to cover the whole planet, in the manner of winding a ball of string. Eventually, the data will permit the detection of vertical movements of one kind or another when multiple coverage of the Earth becomes available. However, the expected lifetime of the platforms is limited, so DLR plans to launch two 23.6 cm interferometric radar satellites to assess dynamic processes occurring on the Earth’s surface.


Side illuminated, colour-coded TanDEM-x elevation model of part of the Sahara desert, in the Tamanrasset province of central Algeria

The resolution of radar interferometry in the two dimensions of a map depends on many factors, some of which stem from the complex processing of the raw data. DLR global data is presented at three resolutions (pixel size): 12 m, the finest; 30 m and 90 m. For local acquisition even finer resolution is possible. Only the 90 m version is being released for free use. The first interferometric radar elevation data to be made freely available was from the NASA Shuttle Radar Topography Mission (SRTM) that was accomplished from the US Space Shuttle Endeavour in 2000, using a single instrument that incorporated two antennas separated by a 60 m long mast deployed from the Shuttle. SRTM acquired data only between latitudes 60° N and 60° S, using 23.6 cm L-band radar. As well as omitting high latitudes, the SRTM design limited actual elevation precision to about 4 m compared with the ±1 m from TerraSAR-X/TanDEM-X. SRTM data with a two-dimensional resolution of 30 m are freely available from the US Geological Survey.

Full global elevation data with a 30 m 2-D resolution and elevation precision of ±9 m have also been produced by the optical stereoscopic potential of the US-Japan ASTER imaging system and are freely available to all via the US Geological Survey. Unlike data produced by radar missions, the optical stereoscopic data from ASTER depend on cloud-free, daytime conditions, and accurate derivation of parallax can be prevented by areas of rugged terrain in deep shadow at the 10 am local-time when images are acquired.

Despite the limitation of TerraSAR-X/TanDEM-X elevation data to a 90 m 2-D resolution, and the consequent loss of textural detail in landscapes, they appear to have the edge in terms of completeness and vertical precision. To get elevation data from DLR requires personal registration after reading a lengthy screed of documentation about data acquisition.

More early art from South Africa?


Silcrete flake from Blombos with crosshatching drawn in red ochre. (Credit: C. Foster)

The Blombos Cave 300 km east of Cape Town is where the earliest signs of art produced by anatomically modern humans were found (see Snippets on human evolution October 2011). The most publicized was a shaped piece of ochre etched with a hashed pattern of lines (Henshilwood, C.S. et al. 2018. An abstract drawing from the 73,000-year-old levels at Blombos Cave, South Africa. Nature v. 561, online; DOI: 10.1038/s41586-018-0514-3). This and the ochre-processing workshop where it was found gave a date of about 100 ka, Now another item has hit the newsrooms; a  ground piece of flinty silcrete that shows signs of being the product of knapping, on which has been drawn a similar pattern, which resembles the now ubiquitous ‘hashtag’ associated with Twitter. The level in the excavation from which it was removed gives an age of about 75 ka. Like the earlier artifact, it involved the use of ochre but in a way that has been said to be an example of drawing or painting, rather than etching. It is likely to have been produced by a sharpened piece of solid ochre, perhaps a kind of crayon

For some reason the object has been hyped as the earliest example of art and of advanced cognitive abilities. But the pattern is not as complex as that on the original etched ochre block from Blombos, or even those on a freshwater mussel from Trinil in Java that could have =been made by associated Homo erectus between 430 and 500 ka ago. This does not take the context at Blombos into account. There is ample evidence that ochre, along with charcoal and burnt seal bone, was being ground there and made into paint found in an abalone shell. It can be surmised that such paint was used for some kind of decoration that has not yet been discovered. That is quite possibly because it was used for body paint as similar materials are still widely used.  Now anyone – male or female – who uses cosmetics today, be it foundation, lipstick, eye-liner and -shadow or the truly fabulous make-up used by the Kathakali performers of Kerala, takes an age to try and to decide on which of an almost imperceptible range of shades to apply. Ochres are like that, as any native Australian artist will tell you.


Lord Rama face paint in Kathakali

To me, the most likely origins of both kinds of Palaeolithic hashtag are: in the case of the ‘drawing’, checking the colour and ‘grindability’ of a sharpened piece of red ochre before use; and for the etched block, using a sharp tool to grind off small amounts from what may have been a well-used block of an especially valued hue.

A revised and updated edition of Steve Drury’s book Stepping Stones: The Making of Our Home World can now be downloaded as a free eBook