Category Archives: Planetary, extraterrestrial geology, and meteoritics

Earth-pages has closed

Dear Earth-pages readers,

It is almost two decades since I was invited to write a regular series of articles on developments in the geosciences at Earth-pages. The site’s archives comprise more than 1200 of my commentaries, covering over 1500 publications. Since 2011 its annual readership has been between 40,000 to 80,000. Sadly, Earth-pages closed on August 1 2019 and no new posts will be added to it. Instead, activity has been transferred to a new site called Earth-logs. Titles of new additions to Earth-logs will continue to be posted here with links to the full text.

Given its wide and loyal readership, I believe that the Earth-pages archives will continue to remain useful, especially for students, teachers and those hoping to begin geoscientific research. So, with the permission of Wiley-Blackwell, they too have been transferred to the new Earth-logs site .


The format is different: the early posts (2000 to 2018) are logged annually under 12 broad themes: GeohazardsGeomorphologyHuman evolution and migrationsMagmatismMiscellaneous CommentaryPalaeoclimatologyPalaeobioloy; Physical ResourcesPlanetary ScienceRemote SensingSedimentology and Stratigraphy, and Tectonics. Each of these pages indexes the research topics covered during each year, along with links to PDFs of the annual logs.

New posts are added regularly to the Earth-logs Home Page. I intend to continue writing these commentaries in the same style as I have adopted at Earth-pages, for as long as I can. An important addition is direct web access to most of the papers on which the posts and the entries in annual logs are based, so that readers can download them as PDFs for their own use.

Thanks for reading my stuff here. Hopefully you will continue to do so at Earth-logs

Steve Drury

More on the Younger Dryas causal mechanism

Colour-coded subglacial topography from radar sounding over the Hiawatha Glacier of NW Greenland (Credit: Kjaer et al. 2018; Fig. 1D)

Read about new data from lake-bed sediments, which suggest that a major impact around 12.8 thousand years ago may have triggered a return to glacial conditions at the start of the Younger Dryas.


How does plate tectonics work?

Read about a new computer model that charts the co-evolution of the mantle and lithosphere, i.e. the linkages between deep convection and plate tectonics.

Still from a movie of simulated breakup of a supercontinent, in bland blue-grey, showing what happens at the surface (left) and, at the same time, in the mantle (right): note the influence of rising plumes (credit: Nicolas Coltice)

What followed the K-Pg extinction event?

Reconstruction of the 35 kg early Palaeocene mammal Taeniolabis (credit: Wikipedia)

Read about processes connected with the Chicxulub impact that may have influenced the K-Pg mass extinction and the evolution of mammalian survivors during the first million years of the Palaeocene, as revealed by a unique sedimentary sequence near Denver, Colorado, USA.

Chaos and the Palaeocene-Eocene thermal maximum

Read how chaotic behaviour in the Solar System may have affected Milankovich cycles in the late Palaeocene

A major Precambrian impact in Scotland

Note: Earth-Pages will be closing as of early July, but will continue in another form at Earth-logs

The northwest of Scotland has been a magnet to geologists for more than a century. It is easily accessed, has magnificent scenery and some of the world’s most complex geology. The oldest and structurally most tortuous rocks in Europe – the Lewisian Gneiss Complex – which span crustal depths from its top to bottom, dominate much of the coast. These are unconformably overlain by a sequence of mainly terrestrial sediments of Meso- to Neoproterozoic age – the Torridonian Supergroup – laid down by river systems at the edge of the former continent of  Laurentia. They form a series of relic hills resting on a rugged landscape carved into the much older Lewisian. In turn they are capped by a sequence of Cambrian to Lower Ordovician shallow-marine sediments. A more continuous range of hills no more than 20 km eastward of the coast hosts the famous Moine Thrust Belt in which the entire stratigraphy of the region was mangled between 450 and 430 million years ago when the elongated microcontinent of Avalonia collided with and accreted to Laurentia.  Exposures are the best in Britain and, because of the superb geology, probably every geologist who graduated in that country visited the area, along with many international geotourists. The more complex parts of this relatively small area have been mapped and repeatedly examined at scales larger than 1:10,000; its geology is probably the best described on Earth. Yet, it continues to throw up dramatic conclusions. However, the structurally and sedimentologically simple Torridonian was thought to have been done and dusted decades ago, with a few oddities that remained unresolved until recently.

NW Scotland geol

Simplified geological map of NW Scotland (credit: British Geological Survey)

One such mystery lies close to the base of the vast pile of reddish Torridonian sandstones, the Stac Fada Member of the Stoer Group. Beneath it is a common-or-garden basal breccia full of debris from the underlying Lewisian Complex, then red sandstones and siltstones deposited by a braided river system. The Stac Fada Member is a mere 10 m thick, but stretches more than 50 km along the regional NNE-SSW  strike. It comprises greenish to pink sandstones with abundant green, glassy shards and clasts, previously thought to be volcanic in origin, together with what were initially regarded as volcanic spherules – the results of explosive reaction of magma when entering groundwater or shallow ponds. Until 2002, that was how ideas stood. More detailed sedimentological and geochemical examination found quartz grains with multiple lamellae evidencing intense shock, anomalously high platinum-group metal concentrations and chromium isotopes that were not of this world. Indeed, the clasts and the ensemble as a whole look very similar to the ‘suevites’ around the 15 Ma old Ries Impact crater in Germany. The bed is the product of mass ejection from an impact, a designation that has attracted great attention. In 2015 geophysicists suggested that the impact crater itself may coincide with an isolated gravity low about 50 km to the east. A team of 8 geoscientists from the Universities of Oxford and Exeter, UK, have recently reported their findings and ideas from work over the last decade. (Amor, K, et al. 2019. The Mesoproterozoic Stac Fada proximal ejecta blanket, NW Scotland: constraints on crater location from field observations, anisotropy of magnetic susceptibility, petrography and geochemistry. Journal of the Geological Society, online; DOI: 10.1144/jgs2018-093).

The age of the Stac Fada member is around 1200 Ma, determined by Ar-Ar dating of K-feldspar formed by sedimentary processes. Geochemistry of Lewisian gneiss clasts compared with in situ basement rocks, magnetic data from the matrix of the deposit, and evidence of compressional forces restricted to it suggest that the debris emanated from a site to the WNW of the midpoint of the member’s outcrop. Rather than being a deposit from a distant source, carried in an ejecta curtain, the Stac Fada material is more akin to that transported by a volcanic pyroclastic flow. That is, a dense, incandescent debris cloud moving near to the surface under gravity from the crater as ejected material collapsed back to the surface. On less definite grounds, the authors suggest that a crater some 13 to 14 km across penetrating about 3 km into the crust may have been involved.

Together with evidence that I described in Impact debris in Britain (Magmatism February 2018) and Britain’s own impact  (Planetary Science November 2002) it seems that Britain has directly witnessed three impact events. But none of them left a tangible crater.

Earth’s water and the Moon

Note: Earth-Pages will be closing as of early July, but will continue in another form at Earth-logs

Where did all our water come from? The Earth’s large complement of H2O, at the surface, in its crust and even in the mantle, is what sets it apart in many ways from the rest of the rocky Inner Planets. They are largely dry, tectonically torpid and devoid of signs of life. For a long while the standard answer has been that it was delivered by wave after wave of comet impacts during the Hadean, based on the fact that most volatiles were driven to the outermost Solar System, eventually to accrete as the giant planets and the icy worlds and comets of the Kuiper Belt and Oort Cloud, once the Sun sparked its fusion reactions That left its immediate surroundings depleted in them and enriched in more refractory elements and compounds from which the Inner Planets accreted. But that begs another question: how come an early comet ‘storm’ failed to ‘irrigate’ Mercury, Venus and Mars? New geochemical data offer a different scenario, albeit with a link to the early comet-storms paradigm.


Simulated view of the Earth from lunar orbit: the ‘wet’ and the ‘dry’. (credit: Adobe Stock)

Three geochemists from the Institut für Planetologie, University of Münster, Germany, led by Gerrit Budde have been studying the isotopes of the element molybdenum (Mo) in terrestrial rocks and meteorite collections. Molybdenum is a strongly siderophile (‘iron loving’) metal that, along with other transition-group metals, easily dissolves in molten iron. Consequently, when the Earth’s core began to form very early in Earth’s history, available molybdenum was mostly incorporated into it. Yet Mo is not that uncommon in younger rocks that formed by partial melting of the mantle, which implies that there is still plenty of it mantle peridotites. That surprising abundance may be explained by its addition along with other interplanetary material after the core had formed. Using Mo isotopes to investigate pre- and post-core formation events is similar to the use of isotopes of other transition metals, such as tungsten (seePlanetary science, May 2016).

Budde and colleagues showed that the 95Mo and 94Mo abundances in water- and carbon-poor meteorites that come from the Asteroid Belt and formed in the inner Solar System differ consistently from those in volatile-rich carbonaceous chondrites that formed much further away from the Sun. The average abundances of the two molybdenum isotopes in the Earth’s silicate rocks, which ultimately had their origin in the mantle, fall between those of the two classes of meteorites (Budde, G. et al.  2019. Molybdenum isotopic evidence for the late accretion of outer Solar System material to Earth. Nature Astronomy, v. 3, online ; DOI: 10.1038/s41550-019-0779-y). They must reflect the materials that accreted after core formation. If the 95Mo and 94Mo abundances resembled those in non-carbonaceous, dry meteorites that would suggest late accretion with much the same composition as expected from Earth’s position in the Inner Solar System. Alternatively, some molybdenum from Earth’s original formative materials failed to unite with iron in the core. The Mo ‘signature’ of volatile-rich carbonaceous meteorites in the mantle’s make-up points to a large amount of accreting material from the Outer Solar System. In contrast, lunar rocks show no carbonaceous meteorite component of Mo isotopes, which helps to explain its overall dryness compared with the Earth. Yet, the Moon is strongly believed to have formed from material blasted away by an impact between the proto-Earth and an errant, Mars-sized body (Theia).

The authors suggest a high probability that Theia was a carbon- and volatile-rich body from the outer Solar System flung inwards by gravitational perturbation associated with the then unstable orbits of the giant planets Jupiter and Saturn. In that case Theia could have delivered not only the anomalous molybdenum, but most of Earth’s water and other volatile compounds.   If the theory is correct, then the cataclysmic event that formed the Moon laid the basis for Earth’s continual tectonic activity and its eventually sparking up life; without the Moon, there would be no life on Earth. That kind of chance event isn’t a factor considered in either the Drake Equation or the Goldilocks Zone. Life, natural selection and sentient beings that might spring from them may be a great deal more elusive than commonly believed by exobiologists.

See also: Formation of the moon brought water to Earth (Science Daily, 21 May 2019)

Chang’E-4 and the Moon’s mantle

Note: Earth-Pages will be closing as of early July, but will continue in another form at Earth-logs

The spacecraft Chang’E-4 landed on the far side of the Moon in January; something of a triumph for the Peoples’ Republic of China as it was a first. It was more than a power gesture at a time of strained relations between the PRC and the US, for it carried a rover (Yutu2) that deploys a panoramic camera, ground penetrating radar, means of assessing interaction of the solar wind with the lunar surface, and a Visible and Near-infrared Imaging Spectrometer (VNIS). The lander module itself bristles with instrumentation, but Yutu2 (meaning Jade Rabbit) has relayed the first scientific breakthrough.


Variation in topography (blue – low to red – high) over the Moon’s South Pole, showing the Aitken Basin and the Chang’E landing site. (Credit: NASA/Goddard)

The landing site is within the largest impact structure on the Moon, the 2500 km-wide Aitken Basin. Unlike the near-side maria, Aitken has only a small masking veneer of flood basalts that formed by internal melting resulting from the mare-forming impacts. Instead it is surrounded by the heavily cratered lunar crust of the Highlands made of calcium-rich plagioclase feldspar, i.e. anorthosite. Within the Aitken Basin lies the 930 km Orientale impact structure. The dark colour of the massive basin contrasts with the highly reflective nature of the Highlands and, in the absence of a basalt veneer, suggests that impacts penetrated the lunar crust to fling mantle material across the surface. The Chang’E landing site therefore offered a chance to examine samples of the Moon’s mantle for the first time – none of the samples returned by the Apollo programme of the 196Os and 70s are of such material.

While Chang’E is not equipped for sample return, the Jade Rabbit’s VNIS is capable of supplying information bearing on the minerals strewn across the basin. The instrument detects reflected radiation from the 450 to 2400 nm wavelength range split into many narrower channels, thereby reconstructing detailed spectra. These can be matched with reference spectra of a large range of minerals. The first results reveal the presence of the minerals olivine ((Mg,Fe)SiO4) and orthopyroxene ((Mg,Fe)Si2O6) in the lunar soil close to the lander, both of which could be from the Moon’s mantle (Li, C. and 16 others 2019. Chang’E-4 initial spectroscopic identification of lunar far-side mantle-derived materials. Nature, v. 569, p. 378–382; DOI: 10.1038/s41586-019-1189-0). Such material may represent the denser, mafic crystalline products of a magma ocean through which they sank, while lower density feldspar floated to the surface to form the Moon’s highly reflective crust.

While the spectral signature of olivine has been detected by similar instruments on satellites in lunar orbit, such results stemmed from broad areas of mixed materials. The Jade Rabbit’s discoveries can be related to actual rock fragments.

Related article: Pinet, P. 2019. The Moon’s mantle unveiled. Nature, v. 569, p. 338-339; DOI: 10.1038/d41586-019-01479-x

A bad day at the end of the Cretaceous

Note: Earth-Pages will be closing as of early July, but will continue in another form at Earth-logs

The New Yorker magazine normally features journalism, commentary, criticism, essays, fiction, satire, cartoons, and poetry. So it is odd that this Condé Nast glossy for the chattering classes snaffled online what may be the geological scoop of the 21st century so far (Preston, D. 2019. The day the dinosaurs died. The New Yorker 8 April 2019 issue). The paper that lies at the centre of the story had not been published and nor had the issue of The New Yorker in which Douglas Preston’s story was scheduled for publication. The very day (29 March 2019) that Britain was thwarted of its Brexit moment the world’s media was frothing with news about the end of another era; the Mesozoic. The paper itself was published online on April Fools’ Day with a title that is superficially arcane (DePalma, R.A. and 11 others 2019. A seismically induced onshore surge deposit at the KPg boundary, North Dakota. Proceedings of the National Academy of Science, early online publication;p DOI: 10.1073/pnas.1817407116). But its contents are the stuff of dreams for any aspiring graduate student of palaeontology; the Indiana Jones opportunity.

An ‘onshore surge deposit’ occurs at many Western Hemisphere sites where the K-Pg boundary outcrops in terrestrial or shallow-marine sediments. The closer to the Chicxulub crater north of Mexico’s Yucatan Peninsula the more obvious they are, for they result from the tsunamis that immediately followed the asteroid impact. Lead author Robert DePalma, now of the University of Kansas, became focussed on the dinosaur-rich, Late Cretaceous Hell Creek Formation of North Dakota as an undergraduate. Accepted for graduate studies he was directed to a project on the fauna of lacustrine sediments close to the K-Pg boundary layer, which is well-known in the area, and that’s what he has been engaged with ever since. In 2012 he was guided to a remarkable locality by a rockhound, disappointed because it exposed extremely fossil-rich sediments but was so soft that none could be extracted intact with a hammer and chisel. It turned out to have resulted from a surge along a sinuous river that had washed debris onto a point-bar deposit at the inside of a meander. The debris includes remains of both marine and terrestrial organisms and shows clear signs of having been swept upriver, i.e. from the sea and possibly the result of a tsunami. Being capped by a thin, iridium-rich layer of impactite, the 1.5 metre surge deposit is part of the K-Pg boundary layer, and probably represented only a few hours before being blanketed by ejecta.

This Event Deposit comprises two graded, fining-upwards units and thus two distinct surges, with a thin mat of vegetation fragments immediately below the Ir-rich clay cap that also contains sparse shocked quartz grains. The Event Deposit contains altered glass spherules throughout, which cgradually become smaller higher in the 1.5 m sequence. Some of the larger spherules produced ‘micro-craters’ in the sediments. Fossils include marine ammonite fragments (some still nacreous) and freshwater fish (paddlefish and sturgeon). The fish are so complete as to suggest an absence of scavengers. The paper itself contains little of the information that dominated Preston’s New Yorker article and the global media coverage. This included clear evidence that the fish ingested spherules, found clogging their gills and possible causing their death. There are examples of spherules embedded in amber formed from plant sap, which suggests sub-aerial fall of ejecta, and among the marine faunal samples are teeth of fish and reptiles (see DePalma et al’s Supplemental Data). The most startling finds reported by Preston are nowhere to be found in DePalma et al’s paper or its supplement. These include possible dinosaur feathers; a fragment of ceratopsian dinosaur skin attached to a hip bone; a burrow containing a mammal jaw that penetrates the K-Pg boundary layer; dinosaur remains, including an egg (complete with embryo) and hatchlings of dinosaurian groups found at deeper levels in the Hell Creek Formation. Previously, palaeontologists had found no dinosaur remains less than 3 m below the K-Pg boundary layer anywhere on Earth, prompting the suggestion that they had become extinct before the near-instantaneous effects of Chicxulub, and were perhaps victims of the general effects of the Deccan Trap volcanism. If verified in later peer-reviewed publications, DePalma et al’s work would help resolve the gradual vs sudden hypotheses for the end-Cretaceous mass extinction.

gill spherules

X-ray and CT images of impact spherules in the gills of a fossil sturgeon from the Tanis K-Pg site, North Dakota (credit DePalma et al. 2019; Fig. 6)

Preston reports some academic scepticism about DePalma’s work, and emphasises his showmanship at conferences; for instance, he named the site ‘Tanis’ after the ancient city in Egypt featured in the 1981 film Raiders of the Lost Ark. There are geophysical queries too. If the inundation was by the on-shore effects of a tsunami it doesn’t tally with the abundance of ejecta fallout of glass spherules: tsunamis propagate in shallow seawater at speeds less than 50 km h-1  and more slowly still in channels, whereas impact ejecta travel much faster. This is acknowledged in the paper’s supplement, and the paper refers to a seiche wave activated by seismic waves associated with the Chicxulub impact which could have arrived in North Dakota at about the same time as its ejecta blanket. The paper’s authorship includes the imprimatur of other authorities in different geoscientific fields, including Walter Alvarez, jointly famed with his father Luis for the discovery of the K-Pg boundary horizon and its impact connections in 1981. So it carries considerable weight. No doubt further comment and further papers on the Tanis site will emerge: DePalma has yet to complete his PhD. It may become the lagerstätte of the K-Pg extinction; in DePalma’s words ‘It’s like finding the Holy Grail clutched in the bony fingers of Jimmy Hoffa, sitting on top of the Lost Ark.’ …

Read more on Palaeobiology and Impacts

A unifying idea for the origin of life

The nickel in stainless steel, the platinum in catalytic converters and the gold in jewellery, electronic circuits and Fort Knox should all be much harder to find in the Earth’s crust. Had the early Earth formed only by accretion and then the massive chemical resetting mechanism of the collision that produced the Moon all three would lie far beyond reach. Both formation events would have led to an extremely hot young Earth; indeed the second is believed to have left the outer Earth and Moon completely molten. All three are siderophile metals and have such a strong affinity for metallic iron that they would mostly have been dragged down to each body’s core as it formed in the early few hundred million years of the Earth-Moon system, leaving very much less in the mantle than rock analyses show. This emerged as a central theme at the Origin of Life Conference held in Atlanta GA, USA in October 2018. The idea stemmed from two papers published in 2015 that reported excessive amounts in basaltic material from both Earth and Moon of a tungsten isotope (182W) that forms when a radioactive isotope of hafnium (182Hf), another strongly siderophile metal, decays. Hafnium too must have been strongly depleted in the outer parts of both bodies when their cores formed. The excesses are explained by substantial accretion of material rich in metallic iron to their outer layers shortly after Moon-formation, some being in large metallic asteroids able to penetrate to hundreds of kilometres. Hot iron is capable of removing oxygen from water vapour and other gases containing oxygen, thereby being oxidised. The counterpart would have been the release of massive amounts of hydrogen, carbon and other elements that form gases when combined with oxygen. The Earth’s atmosphere would have become highly reducing.

Had the atmosphere started out as an oxidising environment, as thought for many decades, it would have posed considerable difficulties for the generation at the surface of hydrocarbon compounds that are the sine qua non for the origin of life. That is why theories about abiogenesis (life formed from inorganic matter) hitherto have focussed on highly reducing environments such as deep-sea hydrothermal vents where hydrogen is produced by alteration of mantle minerals. The new idea revitalises Darwin’s original idea of life having originated in ‘a warm little pond’. How it has changed the game as regards the first step in life, the so-called ‘RNA World’ can be found in a detailed summary of the seemingly almost frenzied Origin of Life Conference (Service, R.F. 2019. Seeing the dawn. Science, v. 363, p. 116-119; DOI: 10.1126/science.363.6423.116).

Isotope geochemistry has also entered the mix in other regards, particularly that gleaned from tiny grains of the mineral zircon that survived intact from as little as 70 Ma after the Moon-forming and late-accretion events to end up (3 billion years ago) in the now famous Mount Narryer Quartzite of Western Australia. The oldest of these zircons (4.4 Ga) suggest that granitic rocks had formed the earliest vestiges of continental crust far back in the Hadean Eon: Only silica-rich magmas contain enough zirconium for zircon (ZrSiO4) to crystallise. Oxygen isotope studies of them suggest that at that very early date they had come into contact with liquid water, presumably at the Earth’s surface. That suggests that perhaps there were isolated islands of early continental materials; now vanished from the geological record. A 4.1 Ga zircon population revealed something more surprising: graphite flakes with carbon isotopes enriched in 12C that suggests the zircons may have incorporated carbon from living organisms.


A possible timeline for the origin of life during the Hadean Eon (Credit: Service, R.F. 2019, Science)

Such a suite of evidence has given organic chemists more environmental leeway to suggest a wealth of complex reactions at the Hadean surface that may have generated the early organic compounds needed as building blocks for RNA, such as aldehydes and sugars (specifically ribose that is part of both RNA and DNA), and the amino acids forming the A-C-G-U ‘letters’ of RNA, some catalysed by the now abundant siderophile metal nickel. One author seems gleefully to have resurrected Darwin’s ‘warm little pond’ by suggesting periodic exposure above sea level of abiogenic precursors to volcanic sulfur dioxide that could hasten some key reactions and create large masses of such precursors which rain would have channelled into ‘puddles and lakes’. The upshot is that the RNA World precursor to the self-replication conferred on subsequent life by DNA is speculated to have been around 4.35 Ga, 50 Ma after the Earth had cooled sufficiently to have surface water dotted with specks of continental material.

There are caveats in Robert Services summary, but the Atlanta conferences seems set to form a turning point in experimental palaeobiology studies.

Read more on Palaeobiology and Planetary science