Category Archives: GIS and Remote Sensing

Chang’E-4 and the Moon’s mantle

Note: Earth-Pages will be closing as of early July, but will continue in another form at Earth-logs

The spacecraft Chang’E-4 landed on the far side of the Moon in January; something of a triumph for the Peoples’ Republic of China as it was a first. It was more than a power gesture at a time of strained relations between the PRC and the US, for it carried a rover (Yutu2) that deploys a panoramic camera, ground penetrating radar, means of assessing interaction of the solar wind with the lunar surface, and a Visible and Near-infrared Imaging Spectrometer (VNIS). The lander module itself bristles with instrumentation, but Yutu2 (meaning Jade Rabbit) has relayed the first scientific breakthrough.

ChangE

Variation in topography (blue – low to red – high) over the Moon’s South Pole, showing the Aitken Basin and the Chang’E landing site. (Credit: NASA/Goddard)

The landing site is within the largest impact structure on the Moon, the 2500 km-wide Aitken Basin. Unlike the near-side maria, Aitken has only a small masking veneer of flood basalts that formed by internal melting resulting from the mare-forming impacts. Instead it is surrounded by the heavily cratered lunar crust of the Highlands made of calcium-rich plagioclase feldspar, i.e. anorthosite. Within the Aitken Basin lies the 930 km Orientale impact structure. The dark colour of the massive basin contrasts with the highly reflective nature of the Highlands and, in the absence of a basalt veneer, suggests that impacts penetrated the lunar crust to fling mantle material across the surface. The Chang’E landing site therefore offered a chance to examine samples of the Moon’s mantle for the first time – none of the samples returned by the Apollo programme of the 196Os and 70s are of such material.

While Chang’E is not equipped for sample return, the Jade Rabbit’s VNIS is capable of supplying information bearing on the minerals strewn across the basin. The instrument detects reflected radiation from the 450 to 2400 nm wavelength range split into many narrower channels, thereby reconstructing detailed spectra. These can be matched with reference spectra of a large range of minerals. The first results reveal the presence of the minerals olivine ((Mg,Fe)SiO4) and orthopyroxene ((Mg,Fe)Si2O6) in the lunar soil close to the lander, both of which could be from the Moon’s mantle (Li, C. and 16 others 2019. Chang’E-4 initial spectroscopic identification of lunar far-side mantle-derived materials. Nature, v. 569, p. 378–382; DOI: 10.1038/s41586-019-1189-0). Such material may represent the denser, mafic crystalline products of a magma ocean through which they sank, while lower density feldspar floated to the surface to form the Moon’s highly reflective crust.

While the spectral signature of olivine has been detected by similar instruments on satellites in lunar orbit, such results stemmed from broad areas of mixed materials. The Jade Rabbit’s discoveries can be related to actual rock fragments.

Related article: Pinet, P. 2019. The Moon’s mantle unveiled. Nature, v. 569, p. 338-339; DOI: 10.1038/d41586-019-01479-x

The risk of landslides in Africa

The most widespread risk from natural hazards is, with little doubt, that posed by ground instability; landslides and landslips; mudflows; rock avalanches and a range of other categories in which large volumes of surface material are set in motion. They can be triggered by earthquakes, volcanism or heavy rainfall that changes the physical properties of rock and soil. Not only steep slopes pose a risk, for some affect ground with quite gentle topography, as witness the terrible scenes from Sulawesi triggered by the 28 September 2018 magnitude 7.5 earthquake beneath the Minhasa Peninsula. This set in motion mudflows on gently sloping ground when the seismic waves caused liquefaction of unconsolidated sediments that not only shattered dwellings by the lateral motion, but whole communities sank into the slurry with little trace. The rapid events left a death toll confirmed at 2010 people with about 5000 missing, feared to have been swallowed by the earth. In the last 9 months mass movement has resulted in fatalities in many places, the most publicised being in Uganda, Japan, Philippines, Sulawesi, Ethiopia, Sumatra, South India, Bangladesh, California, Nepal, and the list grows as it does every year.

407458aa.2

Types of mass movement (Credit: US Geological Survey

As well as purely natural causes, human activities, such as deforestation, excavations and dumping of materials, greatly exacerbate risks. The South Wales former coal-mining communities commemorate every year the collapse of a mine spoil heap on a steep hillside on 21 October 1966 that engulfed a primary school at Aberfan, killing 116 small children and 28 adults. Wherever they occur, there seems to be little chance of escape for those in their path. Slowly it has become possible for geoscientists to outline areas that are potentially at risk from catastrophic mass wastage, sometimes from the distribution of scars of previous events on remotely sensed images, but increasingly by multivariate analysis of landscapes in terms of the factors that may contribute to future ground failures. The principal ones are: topographic slope and relief; annual rainfall, especially the likely precipitation in a single day; vegetation cover, particularly by trees; strength of surface rock and soils, including degrees of consolidation, interbedding and water content; geological structure, such as the trajectory of faults, degree of  jointing and the dip of strata. Modelling risk has to grapple with the global scale of the problem, which cannot be addressed in the least developed regions by piecemeal local studies, although those are urgent, of course, in areas with recorded instances of catastrophic ground failure. Regional studies can screen vast areas of probably low risk so that meagre resources can focus on those that appear to be most dangerous to populated places.

afr landslide

Degree of risk from landslides of all types in the northern part of the East African Rift System (Credit: Broeckx et al. 2018; Fig. 6)

Belgian engineering geologists and GIS specialists have assembled a monumental risk assessment of Africa, together with a bibliography of all published work on mass movement across the continent (Broeckx, J. et al. 2018. A data-based landslide susceptibility map of Africa. Earth-Science Reviews, v. 185, p. 102-121; DOI: 10.1016/j.earscirev.2018.05.002). They point out that Google Earth’s 3-D viewing potential at fine spatial resolution provides a free and rapid means of mapping scars of previous earth movements in considerable detail over areas that data analysis suggests to be susceptible. Their paper provides continent-scale maps of the parameters that they used as well as maps showing several versions of their risk analysis. The supplementary data to the paper include downloadable, full-resolution maps of landslide susceptibility.

German global DEM now freely available

407458aa.2

TerraSAR-X and Tandem-X satellites fly close to each other some 500km above the Earth

In  2007 and 2010 two radar-imaging satellites were launched by the German space agency DLR, TerraSAR-X and Tandem-X respectively. After 2010 both orbited in close, side-by-side formation, sometimes as little as 200 m apart. With one acting as a both a transmitter and receiver of microwave pulses, the other as a receiver, this set up allowed the two signals returning from the Earth’s surface to be matched. The slightly different positions of the platforms results in a time difference at which a pulse reflected from a point on the Earth’s surface reaches the two receiving antennas. This difference varies according to the topographic elevation of the point – in effect analogous to the parallax shift captured in conventional stereoscopic images but measured by the interference between the two signals. Although involving far more complex computation, such radar interferometry produces estimates of each point’s elevation and ultimately a 3-dimensional image of the Earth’s surface. After a period of commercial operation, DLR has decided to make part of the data available free of charge. Both systems use microwaves with a wavelength of around 3 cm (9.65 GHz frequency), which allows topographic elevation to be measured to a precision of ±1 m. Using orbits that cross the poles, each at an angle to the Equator, allows swaths from the dual system eventually to cover the whole planet, in the manner of winding a ball of string. Eventually, the data will permit the detection of vertical movements of one kind or another when multiple coverage of the Earth becomes available. However, the expected lifetime of the platforms is limited, so DLR plans to launch two 23.6 cm interferometric radar satellites to assess dynamic processes occurring on the Earth’s surface.

407458aa.2

Side illuminated, colour-coded TanDEM-x elevation model of part of the Sahara desert, in the Tamanrasset province of central Algeria

The resolution of radar interferometry in the two dimensions of a map depends on many factors, some of which stem from the complex processing of the raw data. DLR global data is presented at three resolutions (pixel size): 12 m, the finest; 30 m and 90 m. For local acquisition even finer resolution is possible. Only the 90 m version is being released for free use. The first interferometric radar elevation data to be made freely available was from the NASA Shuttle Radar Topography Mission (SRTM) that was accomplished from the US Space Shuttle Endeavour in 2000, using a single instrument that incorporated two antennas separated by a 60 m long mast deployed from the Shuttle. SRTM acquired data only between latitudes 60° N and 60° S, using 23.6 cm L-band radar. As well as omitting high latitudes, the SRTM design limited actual elevation precision to about 4 m compared with the ±1 m from TerraSAR-X/TanDEM-X. SRTM data with a two-dimensional resolution of 30 m are freely available from the US Geological Survey.

Full global elevation data with a 30 m 2-D resolution and elevation precision of ±9 m have also been produced by the optical stereoscopic potential of the US-Japan ASTER imaging system and are freely available to all via the US Geological Survey. Unlike data produced by radar missions, the optical stereoscopic data from ASTER depend on cloud-free, daytime conditions, and accurate derivation of parallax can be prevented by areas of rugged terrain in deep shadow at the 10 am local-time when images are acquired.

Despite the limitation of TerraSAR-X/TanDEM-X elevation data to a 90 m 2-D resolution, and the consequent loss of textural detail in landscapes, they appear to have the edge in terms of completeness and vertical precision. To get elevation data from DLR requires personal registration after reading a lengthy screed of documentation about data acquisition.

Ice cliffs on Mars

An illustration of what Mars might have looked...

An illustration of what Mars might have looked like during an ice age between 2.1 million and 400,000 years ago, when Mars’s axial tilt is believed to have been much larger than today.  (credit: Wikipedia)

For Mars to support life and for life to have emerged there demand water that is readily accessible from the surface. There is evidence that in the distant past liquid water may have flowed across the Martian surface to erode river-like features, some associated with the vast canyon system of Valles Marineris. That feature is thought to have been initiated by tectonic forces and perhaps flowing magma, but it shows definite signs of water erosion. Water in great volume was released during the Noachian phase of Mars’s evolution possibly by major impacts 4100 to 3700 million years ago, during the interval known as the Late Heavy Bombardment). Large tracts of the Martian surface that are more muted than Valles Marineris show topographic features reminiscent of huge braided stream systems. Water may have covered vast, low-lying areas in the planet’s Northern Hemisphere to form an early ocean. Yet today the Red Planet seems extremely dry and its thin atmosphere shows only minute traces of water vapour – it is dominated by carbon dioxide. Results from various rovers deployed across its surface and from Mars orbiting satellites have, however, revealed signs of waterlain sediments and minerals that can only have formed by the breakdown of igneous rocks by water. Signs that liquid water continues to flow occasionally down steep slopes, such as rill-like features and ephemeral darkened patches, have been much disputed.

Mars does have an ice cap at its North Pole that waxes and wanes with its seasons, but rather than melting during Martian ‘summers’ the ice sublimates directly to water vapour. Conversely, the polar ices probably form from frost. Yet, astonishingly, there appear to be active glaciers complete with flow lines and moraines, but chances are that some of them are sediment flows ‘lubricated’ by frost binding together mineral particles and boulders that undergoes pressure-induced regelation. Data from orbiting neutron and gamma-ray spectrometers reveal that between 60°N and 60°S the top metre of Martian soil contains between 2 to 18% of ice, making it akin to terrestrial permafrost. So, contrary to its appearance Mars is rich in water, but almost exclusively in solid form. Until very recently, the bulk was thought to be as a matrix binding together sediments, accessible to future crewed mission in useful volumes only by surface mining. That somewhat pessimistic view has now changed dramatically.

Monochrome HiRISE image of a cliff on Mars (the pinkish swath is a simulated natural colour image – see below). beneath the cliff is a zone of jumbled ground formed by cliff collapses. (credit: NASA)

Careful study of fine resolution imagery from the HiRISE instrument on the Mars Reconnaissance Orbiter at latitudes a little less than 60° has centred on cliffs formed by recent erosion (Dundas, C.M and 11 others 2018. Exposed subsurface ice sheets in the Martian mid-latitudes. Science, v. 359, p. 199-201; doi: 10.1126/science.aao1619). Colin Dundas of the US Geological Survey, Flagstaff, Arizona, and US colleagues used the multispectral capacities of HiRISE data to study the composition of sedimentary layers exposed in the cliffs. In eight cases, the cliffs contained layered, almost pure blue ice tens of metres thick and only a few metres below the surface. The cliffs seem to have formed as ice has sublimated where exposed, thereby undermining to sedimentary cover. Below the cliffs are jumbled zones of collapsed material. Being so close to the surface and underlain by apparently ice-free sediments, the layered ice sheets must be geologically quite young.

Simulated natural-colour HiRISE image of a Martian cliff showing nearly pure water ice in blues. Note the layered structure that may represent seasonal variations during the period of ice formation (credit: NASA)

Unlike the Earth, whose axial tilt is stabilised to a large degree by the Moon’s gravity, Mars’s two tiny moons have little effect of this kind. So Mars’s axis wobbles between its current 25° tilt to as much as 45°. This results in large climatic shifts, of which there have been an estimated forty over the last 5 million years. At high tilts solar energy heats up the poles and releases water vapour by accelerated sublimation to be laid down at lower latitudes as frost or snow. Mars’s present tilt suggests that it is experiencing a cold episode so that wind blown dust has covered and preserved mid-latitude ice sheets over tens of thousand years. Nearly pure ice is easier to exploit than permafrost layers. Yet optimism among enthusiasts for a crewed Mars mission and eventual colonisation is tempered by the latitudes of the discoveries. While ready supplies of water from ice and CO2 from the Martian atmosphere give the ingredients for oxygen, methane through catalysis of CO2 and hydrogen, agricultural photosynthesis and all kinds of other useful chemistry, low latitudes offer the most assured solar energy supplies. Latitudes around 55° are frigid and dark during Martian winters; perhaps totally inhospitable. So the remote-sensing search is likely to continue in cliffs closer to the ‘tropics’ of Mars.

Developments in remotely sensed data for geology

Over several decades remote sensing – the interpretation and analysis of image data – has become a central part of many geologists’ ‘toolkit’. It continues a ‘tradition’ founded in the interpretation of panchromatic (black and white), stereoscopic aerial photographs that began after World War 2. But after 1972 and the launch of the first Landsat platform, it has been served by more synoptic views from space using a variety of systems that produce data in many wavelengths of EM radiation, thereby providing opportunities to study spectral properties of the Earth’s surface. This imagery also possesses the analytical flexibility afforded by being recorded in digital form. Since the 1986 launch of the first SPOT platform digital stereoscopic potential from space entered the options for geological interpretation. The Landsat Thematic Mapper (TM) launched in 1982 expanded the spectral range of data. Previously that had been restricted to the visible and near infrared (VNIR) affected mainly by living vegetation and the iron oxy-hydroxides that are the main colorants of rock and soil and TM added a shortwave infrared (SWIR) band. Natural reflectance spectra in that region are affected by Al-OH, Mg-OH and C-O bonds in various hydroxylated silicates and carbonate minerals. The data from TM and its successor the Enhanced Thematic Mapper (ETM) resulted in an explosion of effort into lithological mapping and structural analysis. The last depended on a step-change in resolution to 15 m in the panchromatic band of the ETM system since 1993, together with 10 m stereoscopic resolution from the SPOT family, that enable confident mapping at around 1:100 000 to 1:50 000 scales.

The ETM, its successor on Landsat-8 in 2013 – the Operational Land Imager (OLI) – and the somewhat similar ESA Sentinel-2 system (2015) suffer from one major frustration. Their single broad SWIR band is unable to discriminate –OH and C-O spectral features and hence the lithologically useful range of hydroxylated silicates and carbonate mineral spectra. Also missing from the spectral ‘toolkit’ was any data relating to the major rock-forming silicates. Both drawbacks were remedied to some extent by the launch in 1999 of the Japan/US Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). As well as the VNIR in three bands, including a stereo-image pair, this covered the mineralogically useful SWIR with 6 narrow  wavelength range bands imaging and 5 bands in the thermally emitted infrared (TIR) where common silicates show substantial spectral differences. ASTER produced primarily geoscientific data that have been found to be of enormous use in geological and mineralogical mapping at the 1:100 000 scale.

Nowadays all the data types mentioned so far, except SPOT, are available for download free of cost from the Earth Explorer site operated by the US Geological Survey (use the Data Sets tab at the EE home page): a superb resource that would suit most geological applications. Yet none of these data have spatial resolution better than 10 m. The commercial Earth observation sector has mainly focussed on increasingly finer spatial resolution, mainly panchromatic and the VNIR range of wavelengths that yield information on vegetation and surface topographic and cultural detail, for which there are many profitable markets. Apart from the follow-on to SPOT – the Pléiades system with resolution as fine as 0.5 m – data from a whole constellation of once independent hi-res systems (WorldView, Quickbird, GeoEye, IKONOS and OrbView) are now administered by one vendor Digital Globe. The finest resolution currently available publically is that of WorldView-3 (0.3 m), beyond which is the classified purview of the US intelligence community. The figure illustrates just how much more detailed geological information there is in the finest resolution data than in the same kind of image reduced to 15 m resolution, the best offered by ASTER. That detail needs to be tempered by a few facts: by comparison with the high-res image ASTER shows a regional context, i.e. large-scale geological structures; it covers more spectral bands and is therefore more revealing lithologically; the highest resolution data (WorldView-3 archived) are priced at US$14 to 19 per km2  for each of 6 different band-bundles with a minimum order of 25 km2. Note: for some areas Google Earth has coverage at high-resolution captured at several dates, though some remain at 15 m resolution (based on Landsat-7 ETM).

30cm v 15m

An area in Utah, USA, with almost 100% exposure and very low vegetation cover shown by simulated natural colour images at ~0.3 m with a scale of ~1:1225 (top) and ~15 m at ~1:61275. Credit: Google Earth

The geologist’s dream data would, I suppose, consist of many bands that divide the VNIR, SWIR and TIR into narrow wavebands so that rock and soil spectra can be accurately reproduced, thereby allowing considerable discrimination between different rock types and their main constituent minerals. Oh yes, and it would have decent resolution – better than 15 m. There is indeed such a hyperspectral instrument called CRISM and data from it can be downloaded freely but, before there is a stampede to get access, note that the acronym stands for Compact Reconnaissance Imaging Spectrometer for Mars! For the Earth most hyperspectral data are captured from airborne missions, except for one orbital mission that occasionally functioned over a tiny fraction of the Earth from 2001 to 2017 – NASA’s EO-1 Hyperion system that produced 7.5 km swaths at 30 m resolution with 220 spectral bands covering the VNIR and SWIR regions. Apart from one aimed at oceanic and atmospheric issues, that will say little about rocks, NASA and ESA have no plans in this niche. One commercial developer, Satellogic of Argentina, has hyperspectral plans but only where an income stream is guaranteed, which seems to be just for crops and vegetation spanning the VNIR range. Other outfits have wish lists but few concrete plans in the geoscientific spectral range.

With pending budget cuts to NASA’s Earth science programme (9%), NOAA (22%) and the USGS (14%) demanded by the Trump administration, progress with US contributions to Earth observation can’t be anticipated with much hope. Commercial interests have to pay the shareholders and their dominant focus is on government intelligence agencies, the media, private weather forecasters and agribusiness. So do not expect another or better CRISM in Earth orbit. But it is possible to get by quite nicely at the reconnaissance, small-scale level of mapping, lithological discrimination and some mineral identification with the moderate resolution 14 spectral bands captured by ASTER. If you have the cash, then WorldView-3 offers similar panchromatic, VNIR and SWIR data options at 0.3, 1.2 and 3.7 m resolution, respectively, that should enable very intricate geological mapping.

You may learn more about geological remote sensing here.

‘Big data’ on water resources

 

Two petabytes (2×1015) is a colossal number which happens to approximate how much data has been collected in geocoded form by the Landsat Thematic Mapper and its successors since it was first launched in 1984. In tangible form these would occupy about half a million DVDs, weighing in at about 8 metric tonnes; ‘daunting’ comes nowhere near describing the effort needed to visually interpret this unique set of multi-date imagery. Using the Google Earth Engine, the free cloud-computing platform for big sets of image data which hosts all Landsat data and much else (but not yet the equally daunting ASTER data – roughly a million 136 Mb scenes) the 32 years-worth has been analysed for its content of hydrological information by the European Commission’s Joint Research Centre in Italy, with assistance from Google Switzerland. Using the various spectral characteristics of water in the visible and infrared region, the team has been able to assess the position on the continents of surface water bodies larger than 900 m2, both permanent and ephemeral, and how the various categories have changed in the last 32 years (Pekel, J.-F. et al. 2016. High-resolution mapping of global surface water and its long-term changes. Nature, v. 540, p. 418-422; doi:10.1038/nature20584). The results are conveniently and freely available in their entirety at the Global Surface Water Explorer, an unparalleled and easy-to-use opportunity for water resource managers, wetland ecologists and geographers in general.

Among the revelations are sites and areas that have been subject to gains and losses in water availability, the extents of new and vanished permanent and seasonal water bodies and the conversion of one to the other. A global summary gives a net disappearance of 90 thousand km2 of permanent water bodies, about the area of Lake Superior, but exceeded by new permanent bodies totalling 184 thousand km2. There has been a net increase in permanent water on all continents except Oceania with a loss one percent (note that Antarctica and land north of the Arctic Circle were not analysed). More than 70 % of the losses are in the semi-arid Middle East and Central Asia (Iran, Iraq, Uzbekistan, Kazakhstan and Afghanistan), due mainly to overuse of irrigation, dam construction and long-term drought. Much of the increase in water occurrence stems from reservoir construction, but climate change may have played a part through increased precipitation and melting of high-altitude snow and ice, as in Tibet.

The Aral Sea in Uzbekistan and Kazakhstan has suffered dramatic loss of standing and seasonal water cover due to overuse of water for irrigation from the two main rivers, the Amu (Oxus) and Syr, that flow into it. Note the key to the colours that represent different categories of changes in surface water. (Credit: Global Surface Water Explorer)

The Aral Sea in Uzbekistan and Kazakhstan has suffered dramatic loss of standing and seasonal water cover due to overuse of water for irrigation from the two main rivers, the Amu (Oxus) and Syr, that flow into it. Note the key to the colours that represent different categories of changes in surface water. (Credit: Global Surface Water Explorer)

Many of the lakes in the northern Tibetan Plateau have grown in size during the last 32 years, mainly due to increased precipitation and snow melt. (Credit: Global Surface Water Explorer)

Many of the lakes in the northern Tibetan Plateau have grown in size during the last 32 years, mainly due to increased precipitation and snow melt. (Credit: Global Surface Water Explorer)

There are limitation to the accuracy of the various categories of change, one being the persistence of cloud cover in humid climates, another being the sometimes haphazard scheduling of Landsat Data capture (in some case that has depended on US Government interest in different areas of the world).

More detail on using remote sensing in exploration for and evaluation of water resources can be found here.

Lunar gravity and the Orientale Basin

Mapping the Earth’s gravitational field once involved painstaking use of highly sensitive gravimeters at points on the surface, then interpolating values in the spaces between. How revealing maps produced in this way are depends on the spacing of the field sites, and that is still highly variable because of accessibility and how much money is available to carry out such a task in different areas. Space-borne methods have been around for decades.  One uses radar measurement of sea-surface height, which depends on the underlying gravitational field. The other deploys two satellites in tandem orbits (the US-German Aerospace Centre Gravity Recovery and Climate Experiment – GRACE), the distance between them – measureable using radar –  varying along each orbit according to variations in the Earth’s gravity. Respectively, these methods have produced gravity maps of the ocean floor and estimates melting rates of ice caps and the amount of groundwater extraction from sedimentary basins. The problem with GRACE is that satellites need to avoid the Earth’s atmosphere by using orbits hundreds of kilometres above the surface, otherwise drag soon brings them down. So the resolution of the gravity maps that it produces is too coarse (about 270 km) for most useful applications. If a world has no atmosphere, however, there is no such limit on orbital altitude, other than surface topography. A similar tandem-system to GRACE has been orbiting the Moon at 55 km since 2011. The Gravity Recovery and Interior Laboratory (GRAIL) mission has produced full coverage of lunar gravity at a resolution of 20 km. In a later phase of operation, GRAIL has been skimming the tops of the highest mountains on the Moon at an average altitude of 6 km; close enough to give a resolution of between 3 and 5 km.

Lunar Orbiter 4 image of the Mare Orientale ba...

The Mare Orientale basin on the Moon. (credit: Wikipedia)

This capacity has given a completely new take on lunar near-surface structure, about as good as that provided by conventional gravity mapping for parts of the Earth. The first pay-off has been for the best preserved major impact feature on the lunar surface: the Orientale basin that formed at the end of the Late Heavy Bombardment of the Solar System, around 3.8 billion years ago. The ~400 km diameter Orientale basin is at the western border of the moon’s disk visible from Earth, and looks like a gigantic bullseye. Its central crater, floored by dark-coloured basalt melted from the mantle by the power of the impact, is surrounded by three concentric rings extending to 900 km across; a feature seen partially preserved around even larger lunar maria. The structure of such giant ringed basins – also seen on other bodies in the Solar System – has been something of a puzzle since their first recognition on the Moon. A popular view has been that they are akin to the rippling produced dropping a pebble in water, albeit preserved in now solid rock.

The Orientale basin superimposed by the strength of the moon's gravity field. Areas shaded in red have higher gravity, while areas in blue have the least gravity. (Credit: Ernest Wright, NASA/GSFC Scientific Visualization Studio)

The Orientale basin superimposed by the strength of the moon’s gravity field. Areas shaded in red have higher gravity, while areas in blue have the least gravity. (Credit: Ernest Wright, NASA/GSFC Scientific Visualization Studio)

GRAIL has allowed planetary scientists to model a detailed cross section through the lunar crust (Zuber, M.T. and 27 others, 2016. Gravity field of the Orientale basin from the Gravity Recovery and Interior Laboratory Mission. Science, v. 354, p. 438-441). The 40 km thick anorthositic (feldspar-rich) lunar crust has vanished from beneath the central crater, which is above a great upwards bulge of the lunar mantle mantled by about 2 km of mare basalts. The shape of the crust-mantle boundary beneath the rings shows that it has been thickened by anorthositic debris flung out by the impact. But the rings seem to be controlled by huge faults that penetrate to the mantle: signs of 2-stage gravitational collapse of the edifice produced initially by the impact.

More on planetary impacts

Free course on remote sensing for water exploration

250 million people who live in the drylands of Africa and Asia face a shortage of water for their entire lives. Hundreds of millions more in less drought-prone regions of the ‘Third World’ have to cope repeatedly with reduced supplies. A rapid and effective assessment of how to alleviate the shortfall of safe water is therefore vital. In arid and semi-arid areas surface water storage is subject to a greater rate of evaporation than precipitation, so groundwater, hidden beneath the land surface, provides a better alternative. Rainwater is also lost by flowing away far more quickly than in areas with substantial vegetation. Harvesting that otherwise lost resource and diverting it to storage secure from evaporation – ideally by using it to recharge groundwater – is an equally important but less-used strategy. Securing a sustainable water supply for all peoples is the most important objective that geoscientists can address.

In practice, to assure good quality water supplies to a community in the form of productive wells, surface water harvesting schemes or planning the recharge of exploited aquifers requires skill, a great deal of work and considerable financial resources. Yet in many parts of sub-Saharan Africa and arid areas of Asia knowing where to focus effort and increase the chances of it being fruitful is one the biggest hurdles to overcome. Such reconnaissance – highlighting the most probable localities on geological and hydrological grounds, and screening out those least likely to yield water for drinking and hygiene – depends on details of the geology and topography of the terrain in which needy communities are situated. For most of the Afro-Asian dryland belt adequate geological and topographic maps are in as short supply as potable water itself.  Remote sensing combined with an understanding of groundwater storage and surface-water harvesting is a powerful tool for bridging that knowledge gap, and is routinely used successfully in areas blessed with abundances of experienced geoscientists, money and engineering infrastructure. Again, most of the Afro-Asian dryland belt is poorly endowed in these respects.

dvd-sleeve-front

Having long ago written a textbook on general remote sensing for geoscientists, now out of print (Image Interpretation in Geology (3rd edition): 2001. Nelson Thorne/Blackwell Science), I decided to re-issue revised parts of it framed in the specific context of water exploration in arid and semi-arid terrains, and to add practical case studies and exercises based on a free version of professional image processing and desktop mapping software. Some of the most geologically revealing remotely sensed image data – those from the Landsat series of satellites and the joint US-Japan ASTER system carried by Terra, one of NASA’a Earth Observing System satellites – are now easily and freely available for the whole of the Earth’s land surface. Given basic familiarity with theory and practicalities, a computer and appropriate software together with a moderately fast internet connection there is nothing to stop any geoscientist, university geology student or engineer working in the water, sanitation and hygiene (WASH) sector from becoming a proficient, self-contained practitioner in water reconnaissance. Water Exploration: Remote Sensing Approaches has that aim. Online access to the theoretical parts is free, and a DVD that combines theory, software, exemplary data and several exercises that teach the use of image processing/desktop mapping software is available at cost of reproduction and postage.

If you visit the website, find what you see potentially useful and wish to know more, contact me through the Comments form at the H2Oexplore homepage.

New gravity and bathymetric maps of the oceans

By far the least costly means of surveying the ocean floor on a global scale is the use of data remotely sensed from Earth orbit. That may sound absurd: how can it be possible to peer through thousands of metres of seawater? The answer comes from a practical application of lateral thinking. As well as being influenced by lunar and solar tidal attraction, sea level also depends on the Earth’s gravity field; that is, on the distribution of mass beneath the sea surface – how deep the water is and on varying density of rocks that lie beneath the sea floor. Water having a low density, the deeper it is the lower the overall gravitational attraction, and vice versa. Consequently, seawater is attracted towards shallower areas, standing high over, say, a seamount and low over the abyssal plains and trenches. Measuring sea-surface elevation defines the true shape that Earth would take if the entire surface was covered by water – the geoid – and is both a key to variations in gravity over the oceans and to bathymetry.

Radar altimeters can measure the average height of the sea surface to within a couple of centimetres: the roughness and tidal fluctuations are ‘ironed out’ by measurements every couple of weeks as the satellite passes on a regular orbital schedule. There is absolutely no way this systematic and highly accurate approach could be achieved by ship-borne bathymetric or gravity measurements, although such surveys help check the results from radar altimetry over widely spaced transects. Even after 40 years of accurate mapping with hundreds of ship-borne echo sounders 50% of the ocean floor is more than 10 km from such a depth measurement (80% lacks depth soundings)

This approach has been used since the first radar altimeter was placed in orbit on Seasat, launched in 1978, which revolutionised bathymetry and the details of plate tectonic features on the ocean floor. Since then, improvements in measurements of sea-surface elevation and the computer processing needed to extract the information from complex radar data have show more detail. The latest refinement stems from two satellites, NASA’s Jason-1(2001) and the European Space Agency’s Cryosat-2 (2010) (Sandwell, D.T. et al. 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, v. 346. p. 65-67; see also Hwang, C & Chang, E.T.Y. 2014. Seafloor secrets revealed. Science, v. 346. p. 32-33). If you have Google Earth you can view the marine gravity data by clicking here.  The maps throw light on previously unknown tectonic features beneath the China Sea (large faults buried by sediments), the Gulf of Mexico (an extinct spreading centre) and the South Atlantic (a major propagating rift) as well as thousands of seamounts.

Global gravity over the oceans derived from Jason-1 and Cryosat-2 radar altimetry (credit: Scripps Institution of Oceanography)

Global gravity over the oceans derived from Jason-1 and Cryosat-2 radar altimetry (credit: Scripps Institution of Oceanography)

There are many ways of processing the data, and so years of fruitful interpretation lie ahead of oceanographers and tectonicians, with more data likely from other suitably equipped satellites: sea-surface height studies are also essential in mapping changing surface currents, variations in water density and salinity, sea-ice thickness, eddies, superswells and changes due to processes linked to El Niño.

Earthquakes and radar interferometry

A friend recently moved to the Napa Valley in California, almost certainly motivated by the vast area given over to the grape and the quality of Napa wines. Shortly after the flit, in the middle of some minor refurbishment, he had quite a shock; a Magnitude 6.0 earthquake at 3:20 a.m. local time on 24 August, the worst in northern California for 25 years. My friend lives only 15 km from the epicentre in South Napa, but his house was undamaged. His confidence in the move remains unshaken, however, as there was no effect on this year’s grape harvest.

The event was monitored by the European Space Agency’s Sentinel-1A high-resolution radar satellite that entered orbit in April 2014. Sentinel revisits any area on the ground every 12 days, has all-weather/day-night imaging capacity, a 250 km-wide image swath with 10 m spatial resolution and is designed to analyse ground movements using interferometry between radar data before and after events. Interferometric radar imaging or InSAR relies on changes in the phase of radar waves between two dates of ‘illumination’ of the ground – radar images normally use only the amplitude of a radar wave, ignoring its phase – and potentially can measure shifts in ground elevation of the order of centimetres.

Interferometric radar image of the area around San Francisco showing the ground movement for the period before and after the

Interferometric Sentinel-1A radar image of the area around San Francisco showing the ground movement for the period before and after the Napa Valley earthquake (NE corner) of 24 August 2014 (credit: ESA)

The image records ground movement in small steps of elevation that are assigned colours, the sequence blue-green-yellow-red-magenta spans a ground shift of about 3 cm. If several of these ‘fringes’ are closely spaced over relatively small areas this is due to significant motions locally. Broad areas with little change in colour have barely moved in the period between the dates of the two images.

The epicentre of the South Napa earthquake clearly shows up at the NE corner of the image, like half a ‘bull’s eye’. A closer look at the enlarged image (click on the image) shows two such features sharply bounded to the west by a line: that coincides with the West Napa Fault.

My friend lives to the west of the faults where the broad areas of colour signify much smaller motions than in the main affected area. He woke and left the building thinking this was a foreshock of a much more destructive event, and had an anxious few days. The United States Geological Survey  estimated that during the main ‘quake 15,000 people experienced severe shaking, 106,000 people felt very strong shaking, 176,000 felt strong shaking, and 738,000 felt moderate shaking. But there was only one fatality and 13 hospitalised casualties.